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Abstract
Average treatment effect estimation is the most central problem in causal inference with application to
numerous disciplines. While many estimation strategies have been proposed in the literature, recently
also incorporating generic machine learning estimators, the statistical optimality of these methods has still
remained an open area of investigation. In this paper, we adopt the recently introduced structure-agnostic
framework of statistical lower bounds, which poses no structural properties on the nuisance functions other
than access to black-box estimators that attain small errors; which is particularly appealing when one is
only willing to consider estimation strategies that use non-parametric regression and classification oracles
as a black-box sub-process. Within this framework, we prove the statistical optimality of the celebrated
and widely used doubly robust estimators for both the Average Treatment Effect (ATE) and the Average
Treatment Effect on the Treated (ATTE), as well as weighted variants of the former, which arise in policy
evaluation.
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1. Introduction

Estimating the average treatment effect is one of the central problems in causal inference and has
found important applications in numerous disciplines such as economics (Hirano, Imbens, and Ridder
2003; Imbens 2004), education (Oreopoulos 2006), epidemiology (Little and Rubin 2000; Wood
et al. 2008) and political science (Mayer 2011). In view of its practical importance, a large body
of work is devoted to developing statistically efficient estimators for the average treatment effect
based on regression (Robins, Rotnitzky, and Zhao 1994, 1995; Imbens, Newey, and Ridder 2003),
matching (Heckman, Ichimura, and Todd 1998; Rosenbaum 1989; Abadie and Imbens 2006) and
propensity scores (Rosenbaum and Rubin 1983; Hirano, Imbens, and Ridder 2003) as well as their
combinations. In this paper, we consider estimation of average treatment effects under the assumption
that all potential confounders X between a binary treatment D and an outcome Y are observed,
albeit potentially of large dimensionality; a setting that has considered substantial attention in the
recent literature at the intersection of causal inference and machine learning.

Under this assumption the statistical estimation problem can be formalized as follows. We observe
data (X, D, Y) that follow a distribution that satisfies the following non-linear regression equations:

Y = g0(D, X) + U
D = m0(X) + V

(1)
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where D is a binary treatment variable, U , V are noise variables that satisfy E [U | D, X] = E [V | X] =
0. The conditional mean g0(d, x) and the propensity score m0(x) are commonly referred to as nuisance
functions.

We are interested in the problem of estimating the weighted average treatment effect (WATE)
and the average treatment effect of the treated (ATTE). The WATE is defined as

θATE = E
[
w(X) (g0(1, X) – g0(0, X))

]
(2)

where w(x) ⩾ 0 is a pre-specified and known bounded weight function defined on supp(X). In
the special case when w is constant, Equation (2) recovers the standard definition of the Average
Treatment Effect (ATE). WATE with different choices of the weight function is often used to measure
the effect of personalized interventions on a specific targeted population by some pre-specified
personalized policy (Tao and Fu 2019; Hirano, Imbens, and Ridder 2003). The ATTE is defined as

θATTE = E
[
g(1, X) – g(0, X) | D = 1

]
(3)

and measures the effect of treatments on the treated population (Heckman, Ichimura, and Todd
1998).

Since the nuisance functions g0 and m0 in Equation (1) are unknown and may have complex
structures, and since the dimension K of the covariates X can be large relative to the number of data
n in many applications, it is extremely suitable to apply modern machine learning (ML) methods,
including Lasso (Belloni, Chernozhukov, and Wang 2014; Geer et al. 2014; Chernozhukov, Newey,
and Singh 2022), random forest (Wager and Walther 2015; Syrgkanis and Zampetakis 2020), elastic
net (Zou and Hastie 2005) and deep learning (neural networks) (Schmidt-Hieber 2020; Farrell,
Liang, and Misra 2021) for nonparametric estimation of nuisance functions. Then, a straightforward
approach for estimating our target quantities is to directly plug in the ML estimators that we obtain.
Concretely, let ĝ(d, x) and m̂(x) be our ML estimators for g0(d, x) and m0(x) respectively, then one
can estimate θWATE with

θ̂WATE
PI =

1
n

n∑
i=1

w(Xi) (ĝ(1, Xi) – ĝ(0, Xi)) , (4)

and θATTE with

θ̂ATTE
PI =

( n∑
i=1

m̂(Xi)

)–1 n∑
i=1

(ĝ(1, Xi) – ĝ(0, Xi)) m̂(Xi). (5)

However, in order to avoid overfitting, ML methods typically uses various forms of regularization
that may lead to prohibitively large bias in the plug-in estimators. To mitigate this issue, a line of
works (Chernozhukov et al. 2017; Chernozhukov et al. 2018; Foster and Syrgkanis 2023; Rotnitzky,
Smucler, and Robins 2021; Chernozhukov et al. 2022; Chernozhukov, Newey, and Singh 2023)
proposes to employ a two-stage estimation process called double/debiased machine learning (DML), that
first obtains an ML estimator using a portion of data, and then use the remaining data to debias this
estimator based on the doubly robust estimating equations (Robins and Rotnitzky 1995). Formally,
suppose that θ0 is the parameter of interest, η0 is a nuisance function, and P is a data distribution
such that the moment condition

M (θ0,η0) := EW∼P [m (W ; θ0,η0)] = 0

holds for some moment function m. After obtaining an ML estimator η̂, DML constructs an estimator
θ̂ of θ0 by solving the following moment equation:

Mn(θ, η̂) :=
1
n

n∑
i=1
ψ(Wi; θ, η̂) = 0.
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Then the following result is known for the DML estimator:

Theorem 1. (informal version of (Chernozhukov et al. 2018), Theorem 3.11) Suppose that ψ(W ; θ,η) is
linear in θ, i.e., ψ(W ; θ,η) = a(W ,η)θ + v(W ,η) for some functions a and v. Assuming that

• the nuisance estimation is consistent:

∥η̂ – η0∥P,2 = o(1) (n → +∞). (6)

• the Neyman orthogonality condition holds:

DηM(θ0,η0) [η̂ – η0] = 0 (7)

• second order directional derivative of the moment M in the direction of the nuisance error converges to zero
faster than n– 1

2 :
√

nDηηM (θ0, η̄) [η̂ – η0] = op(1), ∀η̄ = τη̂ + (1 – τ)η0, τ ∈ [0, 1], (8)

and some additional regularity conditions, the DML estimator θ̂ is asymptotically normal:
√

n
(
θ̂ – θ0

)
d→

N (0,Σ) for some covariance matrix Σ.

The asymptotic normality property stated in Theorem 1 implies a high-probability guarantee
on the error rate:

Corollary 1. In the same setup as Theorem 1, for any given γ > 0, there exists a constant Cγ such that
P[|θ̂ – θ0| ⩽ Cγ

√
n] ⩾ 1 – γ for sufficiently large n.

For our goal of estimating WATE and ATTE, one can derive explicit expression for the moment
function ψ that satisfies the conditions in Theorem 1.

Example 1. Let θ0 = θWATE be the target parameter, W = (X, D, Y) is the data sampled from Equation (1),
η0 = (m0, g0) and

ψ(W ; θ,η) = w(X)
[
g0(1, X) – g0(0, X) +

(
D

p0(X)
–

1 – D
1 – p0(X)

)
(Y – g0(D, X))

]
– θ.

which is partially linear in θ and satisfies Equation (7). Moreover, Equation (8) holds when

∥m0 – m̂0∥P,2 · ∥g0 – ĝ0∥P,2 = o
(

n– 1
2

)
. (9)

The resulting debiased estimator is

θ̂WATE =
1
n

n∑
i=1

w(Xi)
[
ĝ(1, Xi) – ĝ(0, Xi) +

(
Di

m̂(Xi)
–

1 – Di
1 – m̂(Xi)

)
(Yi – ĝ(Di, Xi))

]
. (10)

The condition (9) holds as long as the L2 estimation errors of all nuisance functions are faster
than O(n– 1

4 ), which can be achieved by a broad range of machine learning methods (Bickel, Ritov,
and Tsybakov 2009; Belloni and Chernozhukov 2011, 2013; Chen and White 1999; Wager and
Athey 2018; Athey, Tibshirani, and Wager 2019). By Theorem 1, we can then deduce that the
debiased estimator (10) is

√
n-consistent. In contrast, the plug-in estimator defined in Equation (4) is

not
√

n-consistent unless it holds that ∥g0 – ĝ0∥P,2 = O(n– 1
2 ) (Chernozhukov et al. 2018). This is a

strong requirement to impose; for example, it is shown in (Chernozhukov et al. 2022), Section 5.2
that it is violated by the Lasso estimator.

1. To be concise, here we only list the key assumptions underlying DML; we point the readers to (Chernozhukov et al. 2018)
for a rigorous version of the theorem.
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Example 2. Let θ0 = θATTE be the target parameter, W = (X, D, Y) is the data sampled from Equation (1),
η0 = (m0, g0) and

ψ(W ; θ,η) = D (Y – g0(0, X)) –
m0(X)

1 – m0(X)
(1 – D) (Y – g0(0, X)) – Dθ.

which is partially linear in θ and satisfies Equation (7). Moreover, Equation (8) holds when

∥m0 – m̂0∥P,2 ·
∥∥g0(0, ·) – ĝ0(0, ·)

∥∥
P,2 = o

(
n– 1

2

)
. (11)

The resulting debiased estimator is

θ̂ATTE =

( n∑
i=1

Di

)–1 n∑
i=1

[
Di (Yi – ĝ(0, Xi)) –

m̂(Xi)
1 – m̂(Xi)

(1 – Di)(Yi – ĝ(0, Xi))
]

. (12)

The condition (11) holds as long as the L2 estimation errors of the nuisance functions m0 and
g0(0, ·) are faster than O(n– 1

4 ). In this case, Theorem 1 implies that the debiased estimator (12) is√
n-consistent. Note that for ATTE, we do not need to estimate g0(1, ·) for constructing the DML

estimator.
Given the theoretical benefits of DML as discussed above, one naturally asks whether the error

rate guarantee of Theorem 1 can be further improved, especially in regimes where the nuisance
function estimates do not converge at n–1/4 rates. Indeed, for general nonparametric functional
estimation, it has been shown decades ago that if the function possesses certain smoothness properties,
then higher-order debiasing schemes can be designed that lead to improved error rates (Bickel and
Ritov 1988; Birgé and Massart 1995). Specifically, first-order debiasing methods are suboptimal
even when the nuisance function estimators are minimax optimal. Estimators based on higher-order
debiasing have also been proposed and analyzed for functionals that arise in causal inference problems
(Robins et al. 2008; Vaart 2014; Robins, Li, and Mukherjee 2017; Liu et al. 2017). However, the fast
rates of these methods crucially rely on the structure of the underlying function classes.

Unlike first-order debiasing methods, higher-order methods are not structure-agnostic, in the
sense that their error rates no longer apply to black-box estimators of the nuisance functions and the
corresponding estimators are many times cumbersome to deploy in practice. This observation leads
to the following question: does there exist structure-agnostic estimators that can achieve better error rates
than first-order debiasing methods? This question led to the recent introduction of the structure-agnostic
minimax optimality framework (Kennedy et al. 2022). However, existing structure-agnostic lower
bounds do not apply to the central average treatment effect problem.

We give a negative answer to this question: we show that double/debiased machine learning (DML)
methods that rely on first-order debiasing are structure-agnostic optimal for estimating both WATE and
ATTE. More concretely, we prove information-theoretic lower bounds that match the upper bounds
achieved by the doubly robust estimators in terms of the sample size and the quality of nuisance
function estimators. Our proof of the lower bounds uses the method of fuzzy hypotheses that reduces
our estimation problem to the problem of testing a pair of mixtures of hypotheses. Such methods
are widely adopted in establishing lower bounds for non-parametric functional estimation problems
(Tsybakov 2008; Robins et al. 2009; Kennedy et al. 2022; Balakrishnan, Kennedy, and Wasserman
2023). Our main technical contribution is a collection of carefully-designed constructions of the
hypotheses that are built on asymmetric perturbations in the space of nuisance functions. We note that
due to the more complicated relationships between the estimand and the data distribution, existing
constructions of composite hypotheses (Robins et al. 2009; Kennedy et al. 2022) do not apply to our
setting.



Working paper. 5

1.1 Related work

Typical debiasing methods, both first-order (Bickel 1982; Schick 1986) and higher order (Bickel and
Ritov 1988; Birgé and Massart 1995) variants, often employs sample-splitting schemes that use the first
half of the data to construct an initial estimator, and then performs an additional debiasing step using
the second half of data. With recent advances in machine learning (ML), the first step is now often
performed using ML estimators (Belloni et al. 2012; Belloni, Chernozhukov, and Kato 2015; Farrell
2015; Syrgkanis and Zampetakis 2020) that are especially suitable in the case where the covariate X is
high-dimensional. However, these ML methods typically involve model selection/regularization to
trade-off bias and variance, which may lead to large bias in model estimation (Belloni, Chernozhukov,
and Hansen 2014). To resolve this issue, a line of works (Chernozhukov et al. 2017; Chernozhukov
et al. 2018; Foster and Syrgkanis 2023; Rotnitzky, Smucler, and Robins 2021; Chernozhukov et
al. 2022; Chernozhukov, Newey, and Singh 2023; Chen, Syrgkanis, and Austern 2022) propose
double/debiased machine learning (DML) to debias any black-box ML estimators. On the other hand,
when the nuisance parameters are assumed to have some level of smoothness, higher-order debiasing
methods are proposed (Robins et al. 2008; Robins, Li, and Mukherjee 2017; Kennedy et al. 2022) and
are shown to be minimax optimal for smooth classes of nuisance parameters, but these approaches
require ad hoc design of both the estimator in the first step and the debiasing scheme in the second
step, that heavily rely on the smoothness properties. In this sense, DML is structural-agnostic while
higher-order debiasing methods are not.

To have a better theoretical understanding of the statistical benefits of DML, one then needs to
somehow disentangle the effect of the structural assumptions and the debiasing techniques. The
framework proposed by (Balakrishnan and Wasserman 2019) is precisely targeted towards this goal. It
assumes that we already have black-box estimators of the nuisance functions, and we have n i.i.d. data
from the ground-truth model. The goal is to characterize the best-achievable estimation error of the
target quantity as a function of the sample size and the estimation error of the nuisance function. Our
paper investigates the statistical limit of learning average treatment effect in the structural-agnostic
framework proposed by (Balakrishnan, Kennedy, and Wasserman 2023) for functional estimation
problems.

In (Balakrishnan, Kennedy, and Wasserman 2023), the authors investigate the estimation problem
of three functionals: quadratic functionals in Gaussian sequence models, quadratic integral functionals
and the expected conditional covariance θCov = E

[
Cov(D, Y | X)

]
in Equation (1). The authors

of (Balakrishnan, Kennedy, and Wasserman 2023) establish their lower bound by reducing it to
the new problem of lower-bounding the error of a hypothesis testing problem. The error is then
lower-bounded by constructing priors (mixtures) of the composite null and alternate distribution.
The priors they construct are based on adding or subtracting "bumps" on top of a fixed hypothesis
in a symmetric manner, which is a standard proof strategy for this type of problems (Ingster 1994;
Robins et al. 2009; Arias-Castro, Pelletier, and Saligrama 2018; Balakrishnan and Wasserman 2019).
The reason why the proof strategy of (Balakrishnan, Kennedy, and Wasserman 2023) fails for
WATE and ATTE is that the functional relationships between the nuisance parameters and these
target parameters are in different forms. Specifically, the target parameters that (Balakrishnan and
Wasserman 2019) investigates are all in the form of

T(f , g) = ⟨f , g⟩H , (13)

where f , g are unknown nuisance parameters that lie in some Hilbert space H. To be concrete,
consider the example of the expected conditional covariance θCov. Let µ0(x) = E [Y | X = x], then
we have that

θCov = E[DY] –
∫

m0(x)µ0(x)dpX (x)
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where pX is the marginal density of X. The first term, E[DY], can be estimated with a standard
O(n– 1

2 ) rate, so what remains to be estimated is the second term which is exactly in the form of
Equation (13). However, this is not the case for WATE and ATTE, for which the estimand can be
written as

θWATE = T1(m0, g0) := EX
[
w(X) (g0(1, X) – g0(0, X))

]
and

θATTE = T2(m0, g0) :=
EX
[
(g0(1, X) – g0(0, X)) m0(X)

]
EX
[
m0(X)

] .

We view this as the major challenge in extending existing approaches of establishing lower bounds to
the problem of estimating WATE and ATTE, and it is our main contribution in this paper to address
it.

1.2 Notations

We use PX to denote the marginal distribution of the confounding factors X in the model (1). For
any function f : Rn 7→ Rk and distribution P over Rn, we define its Lr-norm as

∥f ∥P,r =
(∫

∥f ∥r dP
) 1

r
, r ∈ (0, +∞)

and
∥f ∥P,∞ = ess sup

{
f (X) : X ∼ P

}
.

We also slightly abuse notation and use ∥f ∥r instead when the distribution is clear from context.
For two sequences (an)n⩾1 and (bn)n⩾1, we write an = O(bn) if there exists a constant C > 0

such that |an| ⩽ C|bn|, ∀n ⩾ 1, and we write an = Ω(bn) if there exists a constant c > 0 such that
|an| ⩾ c|bn|, ∀n ⩾ 1.

2. Structure-agnostic estimation of average treatment effect

As discussed in the previous section, while higher-order debiasing schemes yield minimax optimal
estimation errors for functionals within certain smoothness classes, their improved rates crucially rely
on the structural properties of the underlying function spaces, thereby losing the desirable property
of being structure agnostic. To analyze the statistical limit of estimating treatment effect without
making assumptions on regularity properties of nuisance functions, we adopt the structure-agnostic
framework introduced by (Balakrishnan, Kennedy, and Wasserman 2023).

Specifically, we assume the existence of black-box estimates m̂(x) and ĝ(d, x) of m(x) and g(d, x)
that are accurate in the sense of L2 distance:∥∥g0(0, X) – ĝ(0, X)

∥∥2
PX ,2 ⩽ en,

∥∥g0(1, X) – ĝ(1, X)
∥∥2

PX ,2 ⩽ e′n,∥∥m0(X) – m̂(X)
∥∥2

PX ,2 ⩽ fn,
(14)

where en, e′n and fn are unknown positive numbers that depend on the sample size n used to estimate
the nuisance functions. Note that here we assume that the estimators m̂, ĝ are already known to
the statistician rather than a part of the estimation process. The reason for considering this setup
is that we do not want to open the black box of how these estimators are obtained. In practice,
these estimators can be obtained by leveraging powerful machine learning methods such as Lasso
(Bickel, Ritov, and Tsybakov 2009), random forest (Syrgkanis and Zampetakis 2020), deep neural
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networks (Chen and White 1999; Schmidt-Hieber 2020; Farrell, Liang, and Misra 2021) among
others. Ideally, we would like have a guarantee on the final estimation error that only depends on
the nuisance estimation error (14) but not on algorithmic-dependent properties. Moreover, while
we do not explicitly impose smoothness assumptions on the ground-truth nuisance functions m0 and
g0, existing works that rely on such assumptions can still be related to our current setup, since the
level of smoothness of the nuisance functions directly affects their minimax optimal estimation errors
en and fn (Kennedy et al. 2022).

Apart from the nuisance estimators, we also assume access to i.i.d. data {(Xi, Di, Yi)}n
i=1 that are

also independent of the data used to obtain nuisance estimators. In this way, we fully disentangle
the complete estimation procedure into a learning phase where any machine learning methods can
be used to obtain nuisance estimators from a portion of data, and an improvement/correction phase
that leads to the final estimate. While estimation of WATE/ATTE does not necessarily follows this
procedure, we notice that this is what actually being in practice where one performs sample splitting
and use the remaining samples to correct the bias of the estimations in the first phase. Moreover, this
procedure allows maximal flexibility of choosing the statistician’s favorite ML estimator in the first
phase.

We are interested in answering the following question: what is the optimal error rate that we can
achieve for estimating WATE and ATTE, given known estimators of nuisance functions and i.i.d. data
{(Xi, Di, Yi)}n

i=1?
This question has already been answered in (Kennedy et al. 2022) for estimating the expected

conditional covariance θCov = E
[
Cov(D, Y | X)

]
. Specifically, they assume the existence of black-box

estimators of nuisance functions µ0(x) = E [Y | X = x] and m0(x) with errors en and fn respectively,
and derive a minimax optimal estimation error of Θ

(
en · fn + 1

n

)
. However, to the best of our

knowledge, no such results are known for estimating WATE or ATTE. Indeed, as we discussed in
Section 1.1, existing approaches for establishing minimax optimal error rates cannot be directly
adapted to handle these quantities.

To begin with, we first introduce achievable structure-agnostic upper bounds that is quite well-
understood in existing literature. We revisit double/debiased machine learning (Chernozhukov
et al. 2017; Chernozhukov et al. 2018), a popular technique that performs a first-order bias correction
to the naive plug-in estimators, as introduced in Section 1. Focusing on our setting, the following
results are known for estimating WATE.

Theorem 2. Suppose that there is a constant c ∈ (0, 1) such that c ⩽ m̂(x) ⩽ 1 – c,∀x ∈ supp(X), then for
any δ > 0, there exists a constant Cδ such that the debiased estimator for WATE (defined in Equation (10))
achieves estimation error∣∣∣θ̂WATE – θWATE

∣∣∣2 ⩽ Cδ

(
max{en, e′n} · fn · ∥w∥2

PX ,∞ +
1
n
∥w∥2

PX ,2

)
.

with probability ⩾ 1 – δ.

Theorem 2 implies that with high probability, the estimation error of the debiased estimator (10)
is upper-bounded by the sum of the oracle error which equals 1

n multiplied by the L2 norm of weight
function w, and the product of the error in estimating nuisance functions m0 and g0, multiplied by
the L∞ norm of w. Similarly, for estimating ATTE, we have the following.

Theorem 3. Suppose that there is a constant c ∈ (0, 1) such that c ⩽ m̂(x) ⩽ 1 – c,∀x ∈ supp(X), then for
any δ > 0, there exists a constant Cδ such that the debiased estimator for the average treatment effect of the
treated (defined in Equation (12)) achieves estimation error∣∣∣θ̂ATTE – θATTE

∣∣∣2 ⩽ Cδ

(
en · fn +

1
n

)
(15)
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with probability ⩾ 1 – δ.

Theorem 3 implies that with high probability, the estimation error of the debiased estimator
(12) is upper-bounded by the sum of the oracle error 1

n and the product of the error in estimating
nuisance functions m0 and g0(0, ·). The bound for ATTE is similar to that of WATE, except that it
does not depend on e′n.

Given the high-probability upper bounds in Theorem 2 and 3, it is natural to ask whether these
structure-agnostic guarantees achieved by DML can be further improved. We will investigate this
problem in the subsequent sections.

3. Main results

In this section, we present our main results that lower-bound the estimation errors in the structural-
agnostic setting. Our lower bounds match the upper bounds derived in the previous section, implying
that double/debiased ML estimators are structure-agnostic optimal in estimating WATE and ATTE.

We restrict ourselves to the case of binary outcomes:

Assumption 1. The outcome variable Y is binary, i.e., Y ∈ {0, 1}.

Given that the black-box nuisance function estimators satisfy Equation (14), we define the
following constraint set

Fen,e′n,fn =
{

(m, g) | supp(X) = [0, 1]K , PX = Uniform
(
[0, 1]K),

∥g(0, X) – ĝ(0, X)∥2
PX ,2 ⩽ en, ∥g(1, X) – ĝ(1, X)∥2

PX ,2 ⩽ e′n,

∥m(X) – m̂(X)∥2
PX ,2 ⩽ fn, 0 ⩽ m(x), g(d, x) ⩽ 1,∀x ∈ [0, 1]K

} (16)

where
en, e′n, fn = o(1) (n → +∞).

Note that introducing Assumption 2 and constraints on PX in Equation (16) only strengthens the
lower bound that we are going to prove, since they provide additional information on the ground-
truth model. Moreover, the constraints 0 ⩽ m(x), g(d, x) ⩽ 1 naturally holds due to the fact that both
the treatment and outcome variables are binary. We then define the minimax (1 – γ)-quantile risk of
estimating θWATE over a function space F as

MWATE
n,γ (F ) = inf

θ̂:(X×D×Y)n 7→R
sup

(m∗,g∗)∈F
QPm∗ ,g∗ ,1–γ

(∣∣∣θ̂ – θWATE
∣∣∣2) , (17)

where QP,γ(X) = inf
{

x ∈ R : P[X ⩽ x] ⩾ γ
}

denotes the quantile function of a random variable
X, and Pm∗,g∗ is the joint distribution of (X, D, Y) which is uniquely determined by the functions
m∗ and g∗. Specifically, let µ be the uniform distribution on X ×D × Y = [0, 1]K × {0, 1} × {0, 1},

then the density pm∗,g∗ =
dPm∗ ,g∗

dµ can be expressed as

pm∗,g∗ (x, d, y) = m∗(x)d(1 – m∗(x))1–dg∗(d, x)y(1 – g∗(d, x))1–y.

According to Equation (17), MWATE
n,γ (F ) ⩾ ρ would imply that for any estimator θ̂ of WATE,

there must exist some (m∗, g∗) ∈ F , such that under the induced data distribution, the probability
of θ̂ having estimation error ⩾ ρ is at least 1 – γ. This provides a stronger form of lower bound
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compared with the minimax expected risk defined in (Balakrishnan, Kennedy, and Wasserman 2023),
in the sense that the lower bound MWATE

n,γ (F ) ⩾ ρ implies a lower bound (1 – γ)ρ of the minimax
expected risk, but the converse does not necessarily hold.

Similarly, one can define the minimax quantile risk for estimating ATTE as

MATTE
n,γ (F ) = inf

θ̂:(X×D×Y)n 7→R
sup

(m∗,g∗)∈F
QPm∗ ,g∗ ,1–γ

(∣∣∣θ̂ ({(Xi, Di, Yi)
}n

i=1
)

– θATTE
∣∣∣2) . (18)

The main objective of this section is to derive lower bounds forMWATE
n,γ

(
Fen,e′n,fn

)
andMATTE

n,γ

(
Fen,e′n,fn

)
in terms of en, e′n, fn and n.

To derive our lower bound, we also need to assume that the estimators m̂(x) : [0, 1]K 7→ [0, 1]
and ĝ(d, x) : {0, 1} × [0, 1]K 7→ [0, 1] are bounded away from 0 and 1.

Assumption 2. There exists a constant c such that c ⩽ m̂(x), ĝ(d, x) ⩽ 1 – c for all d ∈ {0, 1} and
x ∈ [0, 1]K .

The assumption that c ⩽ m̂(x) ⩽ 1 – c is common in deriving upper bounds for the error induced
by debiased estimators. On the other hand, the assumption that c ⩽ ĝ(d, x) ⩽ 1 – c is typically not
needed for deriving upper bounds, but it is also made in prior works for proving lower bounds of
estimating the expected conditional covariance E

[
Cov(D, Y) | X

]
(Robins et al. 2009; Balakrishnan,

Kennedy, and Wasserman 2023).
Now we are ready to state our main results.

Theorem 4. For any constant γ ∈
(

1
2 , 1
)

and estimators m̂(x) and ĝ(d, x) that satisfy Assumption 2, for
any given weight function w, the minimax risk of estimating the WATE is

MWATE
n,γ

(
Fen,e′n,fn

)
= Ω

(
max{en, e′n}fn · ∥w∥2

PX ,∞ +
1
n
∥w∥2

PX ,2

)
Remark 1. If we only assume that c ⩽ m̂(x), ĝ(1, x) ⩽ 1 – c in Assumption 2, then we would have the
lower bound

MWATE
n,γ

(
Fen,e′n,fn

)
= Ω

(
e′nfn · ∥w∥2

PX ,∞ +
1
n
∥w∥2

PX ,2

)
.

Furthermore, this lower bound still holds in the case where we know the baseline response, i.e., ĝ(0, x) =
g0(0, x) = 0.

Theorem 5. For any constant γ ∈
(

1
2 , 1
)

and estimators m̂(x) and ĝ(d, x) that satisfy Assumption 2, the
minimax risk of estimating the ATTE is given by

MATTE
n,γ

(
Fen,e′n,fn

)
= Ω

(
en · fn +

1
n

)
Theorems 4 and 5 provide lower bounds of the minimax estimation errors for the WATE and

ATTE, in terms of the sample size and the estimation error of the black-box nuisance function
estimators. Our lower bounds exactly matches the upper bounds in Theorems 2 and 3 attained by
DML estimators, indicating that such estimators are minimax optimal in the structural-agnostic setup
that we focus on.

4. Proof of Theorem 4

In this section, we give the detailed proof of our main result, Theorem 4, for the lower bound of
estimating WATE. We first introduce some preliminary results that our proof will rely on.
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4.1 Preliminaries

In this subsection, we introduce some known results that build the relationship between functional
estimation and hypothesis testing, and then prove some preparatory results for the construction of
hypotheses in subsequent sections. Let H be the Hellinger distance defined as

H(P, Q) =
1
2

∫ (√
P(dx) –

√
Q(dx)

)2

for any distributions P, Q. The first result that we will introduce is due to (Robins et al. 2009) and
upper-bounds the Hellinger distance between two mixtures of product measures.

Formally, let X = ∪m
j=1Xj be a measurable partition of the sample space. Given a vector λ =

(λ1, . . . , λm) in some product measurable space Λ = Λ1 × · · · × Λm, let P and Qλ be probability
measures on X such that the following statements hold:

• P
(
Xj
)

= Qλ

(
Xj
)

= pj for every λ ∈ Λ, and
• The probability measures P and Qλ restricted to Xj depend on the j-th coordinate λj of λ only.

Let p and qλ be the densities of the measures P and Qλ that are jointly measurable in the parameter
λ and the observation x, and π be a probability measure on Λ. Define

b = m max
j

sup
λ

∫
Xj

(qλ – p)2

p
dµ,

and the mixed density q =
∫

qλdπ(λ), then we have the following result.

Theorem 6. ((Robins et al. 2009), Theorem 2.1, simplified version) Suppose that the mixed densities are
equal, i.e. that q = p, and that n max{1, b} maxj pj ⩽ A for all j for some positive constant A, then there
exists a constant C that depends only on A such that, for any product probability measure π = π1 ⊗ · · · ⊗ πm,

H
(

P⊗n,
∫

Q⊗n
λ dπ(λ)

)
⩽ max

j
pj · Cn2b2.

Remark 2. Theorem 6 considers a special case of (Robins et al. 2009), Theorem 2.1. The original variant
of the theorem considers a more general setting where the measures p are also indexed by λ, i.e. pλ, Pλ and
where p is the mixture density. Here, we only need the special cases where all Pλ’s are equal to P. The original
version of the theorem also required that all pλ satisfy that B ⩽ p ⩽ B̄ for some constants B, B̄. In our special
case, we no longer need to assume that. The only step in the proof of (Robins et al. 2009) that makes use of
this assumption is that

max
j

sup
λ

∫
Xj

p2

pλ
dµ
pj

⩽
B̄
B

(see the arguments following their proof of Lemma 5.2). However, in our setting this term is simply

max
j

sup
λ

∫
Xj

p2

pλ
dµ
pj

= max
j

p–1
j

∫
Xj

pdµ = max
j

p–1
j P(Xj) = 1.

Theorem 7. ((Tsybakov 2008), Theorem 2.15) Let π be a probability distribution on a set (measure space)
of distributions P with common support X , which induce the distribution

Q1(A) =
∫

Q⊗n(A)dπ(Q), ∀A ⊂ P .
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Suppose that there exists P ∈ P and a functional T : P 7→ R which satisfies

T(P) ⩽ c, π({Q : T(Q) ⩾ c + 2s}) = 1 (19)

for some s > 0. If H2 (P⊗n, Q1
)
⩽ δ < 2, then:

inf
T̂:X n 7→R

sup
P∈P

P
[∣∣∣T̂ – T(P)

∣∣∣ ⩾ s
]
⩾

1 –
√
δ(1 – δ/4)
2

.

Equivalently, let γ = 1+
√

δ(1–δ/4)
2 , then

inf
T̂:X n 7→R

sup
P∈P

QP,1–γ

(∣∣∣T̂ – T(P)
∣∣∣2) ⩾ s2.

4.2 Partitioning the covariate space

The following lemma states that for an arbitrary weight function w(x), one can always partition the
domain into two subsets that have the same amount of weights.

Definition 1. We say that a set S ⊆ RK is a hyperrectangle collection if it can be partitioned into a finite
number of disjoint hyperrectangles in RK .

Lemma 1. Let S ⊆ RK be a hyperrectangle collection and w(x) : [0, 1]K 7→ R be a non-negative
Lebesgue-integrable function such that ∫

[0,1]K
w(x)dµL(x) > 0,

then S can be partitioned into two hyperrectangle collections S1,S2 such that µL(S1) = 1
2µL(S) and∫

S1

w(x)dµL(x) =
1
2

∫
S

w(x)dµL(x),

where µL is the Lebesgue measure on RK .

Proof. Suppose that S = ∪n
i=1Ci, where Ci =×K

j=1[aij, bij] are disjoint hyperrectangles. Let

Tα =
n⋃

i=1

K–1×
j=1

[aij, bij] ×
[(

1 –
α

2

)
aiK +

α

2
biK ,

1 – α
2

aiK +
1 + α

2
biK

] ,α ∈ [0, 1],

then it is easy to see thatµL(Tα) = 1
2µL(S) and that both Tα and S \Tα are hyperrectangle collections.2

For α0 ∈ (0, 1), dominated convergence theorem implies that limα→α0

∫
Tα w(x)dµL(x) =

limα→α0

∫
S 1{x ∈ Tα}w(x)dµL(x) =

∫
S 1{x ∈ Tα0}w(x)dµL(x) =

∫
Tα0

w(x)dµL(x), so the map-
ping

ψ : [0, 1] 7→ R, α 7→
∫
Tα

w(x)dµL(x)

2. Intuitively, Tα splits S along the K-th dimension into two sets: one set that contains an interval of length 1
2 (biK – aiK )

that lies strictly inside the interval [aiK , biK] and one set that contains two disconnected intervals, one to the left of the
aforementioned middle interval and of length α

2 (biK – aiK ) and one to the right of the aforementioned interval of length( 1
2 – α

2

)
(biK – aiK ).
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is continuous and satisfies
ψ(0) +ψ(1) =

∫
S

w(x)dµL(x)

because T0 ∪ T1 = S and µL(T0 ∩ T1) = 0, so there must exists some α such that:

ψ(α) =
ψ(0) +ψ(1)

2
=

1
2

∫
S

w(x)dµL(x).

Hence we can choose S1 = Tα and S2 = S \ Tα, concluding the proof.

Let PX be the uniform distribution on supp(X) = [0, 1]K and pX be its density. We define
the "truncated" weight function ŵ(x) = w(x)1

{
w(x) > 1

2∥w∥PX ,∞
}

. Applying Lemma 1 to ŵ · w,

recursively, for m times, with m ∈ Z+, we can partition [0, 1]d into M = 2m hyperrectangle collections
B1, B2, · · · , BM , such that µL(Bj) = 1

M and∫
Bj

w(x)ŵ(x)dx =
1
M

, j = 1, 2, · · · , M.

Since PX is the uniform distribution on [0, 1]d , the above implies that

EX
[
w(X)ŵ(X)1{X ∈ Bj}

]
=

1
M

, j = 1, 2, · · · , M.

Let λi, i = 1, 2, · · · , M be i.i.d. Rademacher random variables taking values +1 and –1 both with
probability 0.5. We define

∆(λ, x) =
M/2∑
j=1
λj
(
1

{
x ∈ B2j

}
– 1
{

x ∈ B2j–1

})
. (20)

The following properties of ∆(λ, x) are straightforward.

Proposition 1. We have

Eλ∆(λ, x) =
M/2∑
j=1

Eλj
(
1

{
x ∈ B2j

}
– 1
{

x ∈ B2j–1

})
= 0, ∀x ∈ [0, 1]K (21a)

EXw(X)ŵ(X)∆(λ, X) =
M/2∑
j=1
λj

(
1
M

–
1
M

)
= 0, ∀λ ∈ {0, 1}M/2 (21b)

∆(λ, x)2 =
M/2∑
j=1

(
1

{
x ∈ B2j

}
– 1
{

x ∈ B2j–1

})2
= 1, ∀x ∈ [0, 1]K , λ ∈ {0, 1}M/2. (21c)

Remark 3. The construction of "bump" functions ∆(λ, x) in the form of Equation (20) has also been used
in a line of prior works for proving minimax lower bounds (Balakrishnan, Kennedy, and Wasserman 2023).
However, here we need to carefully construct the partition Bj of the whole domain to handle non-uniform
weights. We note that if we only wanted to deal with an Average Treatment Effect and not a Weighted Average
Treatment Effect, then we would have simply chosen Bj to be an equi-partition of the [0, 1]K space and the
above constructions of the regions Bj , related to balancing the given weights, would not be needed.
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4.3 Core part of lower bound construction

Having completed all preparation steps, we are now ready to present our proof for Theorem 4. The
remaining part of Section 4 is organized as follows. In Section 4.4 and 4.5, we first establish our
lower bound Ω

(
e′nfn∥w∥2

PX ,∞

)
under the following weaker version of Assumption 2, as previously

mentioned in Remark 1:

Assumption 3. There exists a constant c > 0 such that c ⩽ m̂(x), ĝ(1, x) ⩽ 1 – c for all x ∈ [0, 1]K .

We separately present our proof of this lower bound for the two cases e′n ⩾ fn and e′n < fn. Inter-
estingly, these two cases need to be handled separately using different constructions of the composite
hypotheses. In Section 4.6, we show how the lower bound Ω

(
enfn∥w∥2

PX ,∞

)
can be derived in a

similar fashion. To conclude our proof, it remains to prove the lower bound O
(

n–1∥w∥2
PX ,2

)
, which

is the standard oracle error and can be found in the supplementary material.

4.4 Case 1: en ⩾ fn

In this case, we define
gλ(0, x) = ĝ(0, x)

mλ(x) = m̂(x)
[

1 –
β

ĝ(1, x)
ŵ(x)∆(λ, x)

]
gλ(1, x) =

m̂(x)
mλ(x)

[
ĝ(1, x) + αŵ(x)∆(λ, x)

]
,

(22)

whereα,β > 0 are constants that will be specified later in Lemma 5, where we will verify that (mλ, gλ)
belongs to the constrained set Fen,e′n,fn and thus are valid probabilities in particular. Compared with
standard approaches for constructing the composite hypotheses (Ingster 1994; Robins et al. 2009;
Arias-Castro, Pelletier, and Saligrama 2018; Balakrishnan and Wasserman 2019), we employ an
asymmetric construction which means that the nuisance functions are non-linear in the Rademacher
variables λ (in particular the function gλ depends non-linearly in λ due to the dependence on mλ in
the denominator). As discussed in Section 1.1, such type of non-standard constructions are necessary
since the functional that we need to estimate has a different structure than those handled in previous
works.

We first prove some basic properties of our construction.

Proposition 2. For all x ∈ [0, 1]K , we have

Eλmλ(x) = m̂(x) – m̂(x)
β

ĝ(1, x)
ŵ(x)Eλ∆(λ, x) = m̂(x) (23a)

Eλ

[
gλ(1, x)mλ(x)

]
= m̂(x) (ĝ(1, x) + αŵ(x)Eλ∆(λ, x)) = ĝ(1, x)m̂(x). (23b)

We start by bounding the L2 distance from gλ, mλ to ĝ, m̂.

Lemma 2. Assuming that β ⩽ 1
2 c ∥w∥–1

PX ,∞ where c is the constant introduced in Assumption 2, then the
following holds for all 0 < r ⩽ +∞:∥∥gλ(1, X) – ĝ(1, X)

∥∥
PX ,r ⩽ 2(α + c–1β)∥ŵ(X)∥PX ,r ,∥∥mλ(X) – m̂(X)
∥∥

PX ,r ⩽ c–1β∥ŵ(X)∥PX ,r .
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Proof. We have ∥∥mλ(X) – m̂(X)
∥∥

PX ,r = β
∥∥∥∥ ŵ(X)∆(λ, X)

ĝ(1, X)

∥∥∥∥
PX ,r

⩽ c–1β∥ŵ(X)∥PX ,r

and ∥∥gλ(1, X) – ĝ(1, X)
∥∥

PX ,r ⩽

∥∥∥∥ m̂(X) – mλ(X)
mλ(X)

ĝ(1, X)
∥∥∥∥

PX ,r
+ α
∥∥∥∥ m̂(X)

mλ(X)
ŵ(X)

∥∥∥∥
PX ,r

⩽ 2(c–1β + α)∥ŵ(X)∥PX ,r .

Let Qλ be the joint distribution of (X, D, Y) induced by gλ and mλ and µ be the uniform
distribution on [0, 1]K × {0, 1} × {0, 1}. Define qλ = dQλ

dµ . Similarly, let P̂ be the joint distribution

of (X, D, Y) induced by ĝ and m̂, and p̂ = dP̂
dµ . The next lemma states that the mixture of Qλ with

prior π(λ) is exactly equal to P̂.

Lemma 3. Let Q =
∫

Qλdπ(λ) and q = dQ
dµ =

∫
qλdπ(λ), then p̂ = q.

Proof. By definition, we have

qλ(x, d, y) = mλ(x)d(1 – mλ(x))1–dgλ(d, x)y(1 – gλ(d, x))1–y

and
p̂(x, d, y) = m̂(x)d(1 – m̂(x))1–d ĝ(d, x)y(1 – ĝ(d, x))1–y.

The "mixed" joint density q is then given by

q(x, d, y) =
∫

qλ(x, d, y)dπ(λ)

=
∫

mλ(x)d(1 – mλ(x))1–dgλ(d, x)y(1 – gλ(d, x))1–ydπ(λ)

When d = 1, we have

q(x, 1, y) =


∫

mλ(x)gλ(1, x)dπ(λ) if y = 1∫
mλ(x) (1 – gλ(1, x)) dπ(λ) if y = 0.

By Equation (23), we know that∫
mλ(x)gλ(1, x)dπ(λ) = m̂(x)ĝ(1, x) = p̂(x, 1, 1)

and ∫
mλ(x) (1 – gλ(1, x)) dπ(λ) = m̂(x) – m̂(x)ĝ(1, x) = p̂(x, 1, 0),

thus q(x, 1, y) = p̂(x, 1, y), y ∈ {0, 1}.
When d = 0, recall that ĝ(0, x) = gλ(0, x) by our construction, so we have

q(x, 0, y) =
∫

(1 – mλ(x))ĝ(0, x)y(1 – ĝ(0, x))1–ydπ(λ)

= (1 – m̂(x))ĝ(0, x)y(1 – ĝ(0, x))1–y = p̂(x, 0, y).

where we again use Equation (23a) in the second equation. Hence p̂ = q as desired.
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The following lemma implies that the Hellinger distance between the empirical distribution
under P̂ and Qλ with prior π(λ) can be made arbitrarily small, as long as the domain supp(X) is
partitioned into sufficiently many pieces.

Lemma 4. For any δ > 0, as long as M ⩾ max{n, 32C
c4δ

n2} where c is the constant introduced in Assumption 3
and C is the constant implied by Theorem 6 for A = 4c–2, we have

H2
(

P̂⊗n,
∫

Q⊗n
λ dπ(λ)

)
⩽ δ.

Proof. We prove this lemma by applying Theorem 6 to the partition

Xj =
(

B2j–1 ∪ B2j
)
× {0, 1} × {0, 1}, j = 1, 2, · · · , M/2

of [0, 1]K × {0, 1} × {0, 1}, p = p̂ and qλ as constructed above, and µ being the uniform distribution
over [0, 1]K × {0, 1} × {0, 1}. Recall that Bj’s are chosen to satisfy µL(Bj) = 1

M where µL is the
Lebesgue measure, so that

pj := P̂(Xj) = Qλ(Xj) = µL(B2j–1) + µL(B2j) =
2
M

(24)

since their marginal distribution PX is the uniform distribution. Also, since for any x ∈ Xj we have
∆(λ, x) = λj(1{x ∈ B2j–1} – 1{x ∈ B2j}), the distribution Qλ restricted to Xj only depends on λj. It
follows from Equation (24) that

b =
M
2

max
j

sup
λ

∫
Xj

(qλ – p̂)2

p̂
dµ

⩽ max
j

M
2

pj · sup
(x,d,y)∈Xj

(p̂(x, d, y) – qλ(x, d, y))2

p̂(x, d, y)

⩽
4
c2

,

where the last step holds since

p̂(x, 1, y) ⩾ pX (x) · min
{

m̂(x), 1 – m̂(x)
}
· min

{
ĝ(1, x), 1 – ĝ(1, x)

}
⩾ c2

by Assumption 3, which implies that

(p̂(x, 1, y) – qλ(x, 1, y))2

p̂(x, 1, y)
⩽

4
c2

,

and for all (x, 0, y) ∈ supp(P̂),

(p̂(x, 0, y) – qλ(x, 0, y))2

p̂(x, 0, y)
⩽

(mλ(x) – m̂(x))2ĝ(0, x)2y(1 – ĝ(0, x))2(1–y)

(1 – m̂(x))ĝ(0, x)y(1 – ĝ(0, x))1–y

⩽
4
c

.

Hence we have

Cn2
(

max
j

pj

)
b2 ⩽

32Cn2

c4M
⩽ δ

Finally, we have n max{1, b} maxj pj ⩽ 4nc–2M–1 ⩽ 4c–2 = A by our choice of M, so all conditions
of Theorem 6 hold. By Theorem 6, we can conclude that H2(P̂, Q) ⩽ δ.
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As the final building block for establishing our lower bound, we prove the following lemma, which
implies that with proper choices of α and β, mλ, gλ are close (in the sense of L2-distance) to m̂ and ĝ
respectively, and that the separation condition (19) holds with distance s = Ω

(√
enfn ∥w∥PX ,∞

)
.

Lemma 5. Let

α =
√

e′n
4∥ŵ(X)∥PX ,2

, β =
c
√

fn
4∥ŵ(X)∥PX ,2

,

then for sufficiently large n, we have (mλ, gλ) ∈ Fen,e′n,fn and

EX
[
w(X)gλ(1, X)

]
⩾ E

[
w(X)ĝ(1, X)

]
+

1
2
αβE

[
w(X)ŵ(X)2

ĝ(1, X)

]
, ∀λ ∈ {0, 1}M/2. (25)

Proof. Our assumption that e′n ⩾ fn implies that α ⩾ β. Since e′n, fn = o(1)(n → +∞), for sufficiently
large n we must have

max{α,β} ⩽
1
4

c2
(
1 + ∥w(X)∥PX ,∞

)–4 min
{

1,E
[

w(X)ŵ(X)2

ĝ(1, X)

]}
, (26)

where c is the constant introduced in Assumption 3. In the remaining part of the proof we will
assume that Equation (26) holds.

First, by Lemma 2 and our choice of α and β it is easy to see that

∥∥m̂(X) – mλ(X)
∥∥

PX ,2 ⩽ c–1β∥ŵ(X)∥PX ,2 ⩽
√

fn∥∥ĝ(1, X) – gλ(1, X)
∥∥

PX ,2 ⩽ (α + c–1β)∥ŵ(X)∥PX ,2 ⩽
√

e′n.

Note that the second inequality above makes use of our assumption that e′n ⩾ fn. Again applying
Lemma 2 with r = ∞, we have

∥∥ĝ(1, X) – gλ(1, X)
∥∥

PX ,∞ ⩽ (α + c–1β)∥ŵ(X)∥PX ,∞ ⩽ 1
2 c which

implies that 0 ⩽ gλ ⩽ 1. Similarly we have 0 ⩽ mλ ⩽ 1, so (mλ, gλ) ∈ Fen,e′n,fn .

It remains to show that Equation (25) holds. To see this, note that for fixed λ ∈ {0, 1}M/2 we
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have

E
[
w(X)gλ(1, X)

]
(27a)

= E

w(X)
ĝ(1, X) + αŵ(X)∆(λ, X)

1 – β
ĝ(1,X) ŵ(X)∆(λ, X)

 (27b)

= E

w(X) (ĝ(1, X) + αŵ(X)∆(λ, X))
+∞∑
k=0

(
β

ĝ(1, X)
ŵ(X)∆(λ, X)

)k
 (27c)

= E
[
w(X)

(
ĝ(1, X) + (α + β)ŵ(X)∆(λ, X) +

αβ + β2

ĝ(1, X)
ŵ(X)2

)]
+ E
[
αβ2

ĝ(1, X)2
w(X)ŵ(X)3∆(λ, X)

]
(27d)

+ E

w(X) (ĝ(1, X) + αŵ(X)∆(λ, X))
+∞∑
k=3

(
β

ĝ(1, X)
ŵ(X)∆(λ, X)

)k
 (27e)

⩾ E
[
w(X)ĝ(1, X)

]
+ αβE

[
w(X)ŵ(X)2

ĝ(1, X)

]
– c–2αβ2∥w∥4

PX ,∞ – 2c∥w∥PX ,∞

+∞∑
k=3

(
c–1β∥w∥PX ,∞

)k
(27f )

⩾ E
[
w(X)ĝ(1, X)

]
+ αβE

[
w(X)ŵ(X)2

ĝ(1, X)

]
– C0(αβ2 + β3), (27g)

where Equation (27b) follows from our construction in Equation (22), Equation (27c) uses a Taylor
expansion which is valid since Equation (26) implies that

∣∣∣ β
ĝ(1,X) ŵ(X)∆(λ, X)

∣∣∣ ⩽ c–1∥w∥PX ,∞β ⩽ 1
2 ,

Equation (27e) follows from a direct expansion of Equation (27c) up to the second-order term,

Equation (27f) is deduced by noticing that EXw(X)ŵ(X)∆(λ, X) = 0 (by Proposition 1) and ŵ(X)2
ĝ(1,X) ⩾ 0

and ĝ(1, X) ⩾ c and using the upper bound on α by Equation (26). Finally, Equation (27g) holds
for C0 = 4c–2∥w∥4

PX ,∞, invoking also the identity
∑∞

k=3 tk = t3/(1 – t) for t = c–1β|0w|0PX ,∞ ⩽

1/2. Here, it is important to note that our construction in Equation (22) exactly ensures that
the first-order terms (in α and β) cancel out. Finally, Equation (26) and α ⩾ β together imply

that C0(αβ2 + β3) ⩽ 2C0αβ
2 ⩽ 1

2E
[

w(X)ŵ(X)2
ĝ(1,X)

]
αβ, so Equation (25) immediately follows from

Equation (27), concluding the proof.

We are now ready to prove Theorem 4 in the case when e′n ⩾ fn. For any γ > 1
2 , there

exists some δ ∈ (0, 2) such that 1+
√

δ(1–δ/4)
2 = γ. We choose M ⩾ max{n, 32C

c4δ
n2} and P =

{P̂}∪
{

Qλ : λ ∈ {0, 1}M/2
}

, P = P̂, π be the discrete uniform distribution on
{

Qλ : λ ∈ {0, 1}M/2
}

,

s = 1
4αβE

[w(X)ŵ(X)2
ĝ(1,X)

]
in the context of Theorem 7. Then Lemma 4 and 5 imply that all the listed

conditions are satisfied for the WATE functional

T(P) = θWATE(P) = EP
[
w(X) (g(1, X) – g(0, X))

]
.



18 Jikai Jin et al.

Therefore, by Theorem 7, we have

inf
θ̂

sup
P∈P

QP,1–γ

(∣∣∣θ̂({(Xi, Di, Yi)}N
i=1

)
– θWATE

∣∣∣2)
= Ω

(
αβE

[
w(X)ŵ(X)2

ĝ(1, X)

])
= Ω

( √
e′nfn

∥ŵ(X)∥2
PX ,2

· E
[

w(X)ŵ(X)2

ĝ(1, X)

])

= Ω

(√
e′nfn ·

E
[
w(X)ŵ(X)2

]
∥ŵ(X)∥2

PX ,2

)

= Ω

√e′nfn ·
E
[
w(X)31

{
w(X) > 1

2∥w∥PX ,∞
}]

E
[
w(X)21

{
w(X) > 1

2∥w∥PX ,∞
}]


= Ω
(
∥w∥PX ,∞

√
e′nfn
)

.

4.5 Case 2: fn > e′n
In this case, we consider a different construction as follows:

gλ(0, x) = ĝ(0, x)

gλ(1, x) =
ĝ(1, x)

1 + β
ĝ(1,x) ŵ(x)∆(λ, x) – αβŵ(x)2

mλ(x) =
ĝ(1, x)

gλ(1, x)
(m̂(x) + αm̂(x)ĝ(1, x)ŵ(x)∆(λ, x))

(28)

where ∆(λ, x) is defined in Equation (20) and α,β > 0 are constants that will be specified later.
Parallel to Proposition 2 and Lemma 2, we first prove some basic properties of our construction.

Proposition 3. We have
Eλ

[
mλ(x)gλ(1, x)

]
= m̂(x)ĝ(1, x) and

Eλ

[
mλ(x)

]
= m̂(x)

Proof. By Proposition 1, we have

Eλ

[
mλ(x)gλ(1, x)

]
= m̂(x)ĝ(1, x) + αm̂(x)ĝ(1, x)2ŵ(x)Eλ∆(λ, x) = m̂(x)ĝ(1, x)

Eλ

[
mλ(x)

]
= Eλ

[
(m̂(x) + αm̂(x)ĝ(1, x)ŵ(x)∆(λ, x))

(
1 +

β

ĝ(1, x)
ŵ(x)∆(λ, x) – αβŵ(x)2

)]
= m̂(x) +

[
α(1 – αβŵ(x)2)m̂(x)ĝ(1, x)ŵ(x) + β

m̂(x)
ĝ(1, x)

ŵ(x)
]
Eλ∆(λ, x)

– αβm̂(x)
(

1 – Eλ∆(λ, x)2
)

ŵ(x)2

= m̂(x).
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Lemma 6. Assuming that α ⩽ max{1, ∥w∥PX ,∞}–1 and β ⩽ 1
4 c · max{1, ∥w∥PX ,∞}–2 where c is a

constant introduced in Assumption 2, then the following holds for all 0 < r ⩽ +∞:∥∥gλ(1, X) – ĝ(1, X)
∥∥

PX ,r ⩽ 2β∥ŵ(X)∥PX ,r∥∥mλ(X) – m̂(X)
∥∥

PX ,r ⩽ 2(α + c–1β)∥ŵ(X)∥PX ,r .

Proof. From our assumptions onα andβ, one can see that
∣∣ β

ĝ(1,x) ŵ(x)∆(λ, x)–αβŵ(x)2
∣∣ ⩽ c–1β|0w|0PX ,∞+

β|0w|02
PX ,∞ ⩽ 1

2 . Thus it follows that

∥∥gλ(1, X) – ĝ(1, X)
∥∥

PX ,r ⩽ 2
∥∥∥∥ĝ(1, X)

(
β

ĝ(1, X)
ŵ(X)∆(λ, X) – αβŵ(X)2

)∥∥∥∥
PX ,r

⩽ (β + αβ|0w|0PX ,∞)|0w(X)|0PX ,r ⩽ 2|0w(X)|0PX ,r

and ∥∥mλ(X) – m̂(X)
∥∥

PX ,r ⩽ 2c–1β|0w|0PX ,∞ + α|0w|0PX ,∞ + 2c–1αβ|0w|02
PX ,∞

⩽ 2(α + c–1β)∥ŵ(X)∥PX ,r .

Note that a key difference between Lemma 6 and Lemma 2 is that in the former lemma, the
deviations of gλ and mλ are O(β) and O(α + β) respectively, while the converse is true in the latter
one. This difference is intentional, since here we assume that fn > e′n.

Let Qλ be the joint distribution of (X, D, Y) induced by gλ and mλ and µ be the uniform
distribution on [0, 1]K × {0, 1} × {0, 1}. Define qλ = dQλ

dµ . Similarly, let P̂ be the joint distribution

of (X, D, Y) induced by ĝ and m̂, and p̂ = dP̂
dµ . Using exactly the same arguments as we did in Lemma

3 and 4, one can prove the following lemmas.

Lemma 7. Let Q =
∫

Qλdπ(λ) and q = dQ
dµ =

∫
qλdπ(λ), then p̂ = q.

Lemma 8. For any δ > 0, as long as M ⩾ max{n, 32C
c4δ

n2} where c is the constant introduced in Assumption 3
and C is the constant implied by Theorem 6 for A = 4c–2, we have

H2
(

P̂⊗n,
∫

Q⊗n
λ dπ(λ)

)
⩽ δ.

Finally, we prove the analogue of Lemma 5 for the different construction that we are now
considering.

Lemma 9. Let

α =
√

fn
4∥ŵ(X)∥PX ,2

, β =
c
√

e′n
4∥ŵ(X)∥PX ,2

,

then for sufficiently large n, we have (mλ, gλ) ∈ Fen,e′n,fn , and ∀λ ∈ {0, 1}M/2:

EX
[
w(X)gλ(1, X)

]
⩾ E

[
w(X)ĝ(1, X)

]
+

1
2
αβEX

[
ĝ(1, X)w(X)ŵ(X)2

]
(29)



20 Jikai Jin et al.

Proof. Since e′n, fn = o(1)(n → +∞), for sufficiently large n we must have

max{α,β} <
1
4

c2(1 + ∥w∥PX ,∞)–4 min
{

1,EX
[
ĝ(1, X)w(X)ŵ(X)2

]}
, (30)

where c is the constant introduced in Assumption 3. First, by Lemma 6 our choice of α and β it is
easy to see that ∥∥m̂(X) – mλ(X)

∥∥
PX ,2 ⩽ 2(α + c–1β)∥ŵ(X)∥PX ,2 ⩽

√
fn∥∥ĝ(1, X) – gλ(1, X)

∥∥
PX ,2 ⩽ 2β∥ŵ(X)∥PX ,2 ⩽

√
e′n.

Note that the first inequality above makes use of our assumption that fn > e′n. Applying Lemma 6
with r = ∞, Equation (30) implies that 0 ⩽ mλ, gλ ⩽ 1. Hence (mλ, gλ) ∈ Fen,e′n,fn .

It remains to show that Equation (29) holds. Note that for fixed λ ∈ {0, 1}M/2 we have

EX
[
w(X)gλ(1, X)

]
= EX

w(X)
ĝ(1, X)

1 + β
ĝ(1,X) ŵ(X)∆(λ, X) – αβŵ(X)2


= EX

w(X)ĝ(1, X)

1 +
+∞∑
k=1

βk
(
αŵ(X)2 –

1
ĝ(1, X)

ŵ(X)∆(λ, X)
)k
 (31a)

= EXw(X)ĝ(1, X) + αβEX
[
ĝ(1, X)w(X)ŵ(X)2

]
– βEX

[
w(X)ŵ(X)∆(λ, X)

]
+ EX

w(X)ĝ(1, X)
+∞∑
k=2

βk
(
αŵ(X)2 –

1
ĝ(1, X)

ŵ(X)∆(λ, X)
)k
 (31b)

⩾ EX
[
w(X)ĝ(1, X)

]
+ αβEX

[
ĝ(1, X)w(X)ŵ(X)2

]
– C0β

3, (31c)

where Equation (31a) uses Taylor expansion which holds since∣∣∣∣βŵ(X)
(
αŵ(X) –

1
ĝ(1, X)

∆(λ, X)
)∣∣∣∣ ⩽ 1

4
c ·
(

1 +
1
c

)
⩽

1
2

by Equation (30), Equation (31b) follows from directly expanding Equation (31a), and Equa-
tion (31c) holds with C0 = 2c–2∥w∥4

PX ,∞ where we use the fact that EX
[
w(X)ŵ(X)∆(λ, X)

]
= 0

(by Proposition 1) and that for any |t| ⩽ 1/2,
∑∞

k=2 tk ⩾
∑∞

k=3 tk = t3/(1 – t) (applied for t :=

β
(
αŵ(X)2 – 1

ĝ(1,X) ŵ(X)∆(λ, X)
)

, which also satisfies that t3 ⩾ –β3|0w|03
PX ,∞/ĝ(1, X)3). Moreover,

Equation (30) and fn > e′n together imply that C0β
3 ⩽ C0β

2cα ⩽ 1
2 cαβEX

[
ĝ(1, X)w(X)ŵ(X)2

]
, so

Equation (29) immediately follows from Equation (31), concluding the proof.

We are now ready to prove Theorem 4 in the case when fn > en. We choose M ⩾ max{n, 32C
c4δ

n2}

andP = {P̂}∪
{

Qλ : λ ∈ {0, 1}M/2
}

, P = P̂, π be the discrete uniform distribution on
{

Qλ : λ ∈ {0, 1}M/2
}

,

s = 1
4αβEX

[
ĝ(1, X)w(X)ŵ(X)2

]
in the context of Theorem 7. Then all the listed conditions are

satisfied for the WATE functional

T(P) = θWATE(P) = EP
[
w(x) (g(1, X) – g(0, X))

]
.
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Therefore, by Theorem 7, we obtain a lower bound

inf
θ̂

sup
P∈P

QP,1–γ

(∣∣∣θ̂({(Xi, Di, Yi)}N
i=1

)
– θWATE

∣∣∣2)
= Ω

(
αβEX

[
ĝ(1, X)w(X)ŵ(X)2

])
= Ω

(√
e′nfn ·

EX
[
ĝ(1, X)w(X)ŵ(X)2

]
∥ŵ(x)∥2

P,2

)

= Ω

√e′nfn ·
EX
[
w(X)31

(
w(X) ⩾ 1

2∥w∥PX ,∞
)]

EX
[
w(X)21

(
w(X) ⩾ 1

2∥w∥PX ,∞
)]


= Ω
(
∥w∥PX ,∞ ·

√
e′nfn
)

.

4.6 Proof of the lower bound enfn∥w∥2
PX ,∞

Combining the derivations in Section 4.4 and 4.5, we have shown that

MWATE
n

(
Fen,e′n,fn

)
= Ω

(
e′n · fn · ∥w∥2

PX ,∞

)
.

In this section, we illustrate how the lower bound Ω
(

enfn∥w∥2
PX ,∞

)
can be derived in a completely

symmetric fashion. Parallel to the proofs in Section 4.4 and 4.5, we also consider two cases: en ⩾ fn
and en < fn.

In the first case, we define

gλ(0, x) =
1 – m̂(x)

1 – mλ(x)
[
ĝ(0, x) – αŵ(x)∆(λ, x)

]
mλ(x) = m̂(x) + (1 – m̂(x))

β

ĝ(0, x)
ŵ(x)∆(λ, x)

gλ(1, x) = ĝ(1, x).

(32)

In the second case, we define

gλ(0, x) =
ĝ(0, x)

1 + β
ĝ(0,x) ŵ(x)∆(λ, x) – αβŵ(x)2

gλ(1, x) = ĝ(1, x)

mλ(x) = 1 –
ĝ(0, x)

gλ(0, x)
(1 – m̂(x)) (1 – αĝ(0, x)ŵ(x)∆(λ, x))

(33)

Then we have the following result.

Lemma 10. Let Qλ be the joint distribution of (X, D, Y) induced by gλ and mλ and µ be the uniform
distribution on [0, 1]K × {0, 1} × {0, 1}. Define qλ = dQλ

dµ . Then
∫

qλdπ(λ) = p̂. Moreover, there exists
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constants cα, cβ > 0, such that by choosing

(α,β) =



(
cα

√en
∥ŵ(X)∥PX ,2

, cβ

√
fn

∥ŵ(X)∥PX ,2

)
for the first case;(

cα

√
fn

∥ŵ(X)∥PX ,2
, cβ

√en
∥ŵ(X)∥PX ,2

)
for the second case,

the following inequalities hold for sufficiently large n:∥∥m̂(X) – mλ(X)
∥∥2

PX ,2 ⩽ fn, (34a)∥∥ĝ(0, X) – gλ(0, X)
∥∥2

PX ,2 ⩽ en, (34b)

EX
[
w(X)gλ(0, X)

]
⩽ E

[
w(X)ĝ(0, X)

]
–Ω

(√
enfn∥w∥PX ,∞

)
. (34c)

The proof of Lemma 10 follows the exactly same route as the proofs in Section 4.4 and 4.5,
so we do not repeat it here. Finally, we can directly apply Theorem 7 to obtain the lower bound
Ω
(

enfn∥w∥2
PX ,∞

)
.

5. Proof of Theorem 5

In this section, we give the detailed proof of our main result, Theorem 5, for the lower bound of
estimating ATTE. The idea of the proof is similar to that of Theorem 4, but additional effort needs
to be made to guarantee that the separation condition (19) holds.

Let PX be the uniform distribution on supp(X) = [0, 1]K , and [0, 1]K be partitioned into M cubes
B1, B2, · · · , BM , each with volume 1

M . Let λi, i = 1, 2, · · · , M
2 be i.i.d. variables taking values +1 and

–1 both with probability 0.5.
Define

θATTE
ML =

(
EX
[
m̂(X)

])–1 EX
[
m̂(X) (ĝ(1, X) – ĝ(0, X))

]
and let pX be the uniform distribution on [0, 1]K . We first prove the following lemma:

Lemma 11. There exist constants Cu, cu > 0 that only depend on m̂ and ĝ, such that for all sufficiently large
integer M, there exists a function u : [0, 1]K → R⩾0 satisfying ∥u∥∞ ⩽ Cu and a partition [0, 1]K = ∪M

j=1Bj

into Lebesgue-measurable sets Bj each with measure 1
M , such that

EX
[
u(X)

(
ĝ(1, X) – ĝ(0, X) – θATTE

ML

)
∆(λ, X)

]
= 0, ∀λ ∈ {–1, +1}M/2 (35)

and

EX

[
u(X)

m̂(X) (1 – m̂(X))

]
⩾ cu, (36)

where we recall that

∆(λ, x) :=
M/2∑
j=1
λj
(
1

{
x ∈ B2j–1

}
– 1
{

x ∈ B2j
})

.
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Proof. Let α = P
[
ĝ(1, X) – ĝ(0, X) – θATTE

ML = 0
]
. If α = 1, then we can simply choose u = 1 and

cu = 1. Thus we can assume that α < 1. In this case either

P
[
ĝ(1, X) – ĝ(0, X) – θATTE

ML > 0
]
⩾

1 – α
2

or
P
[
ĝ(1, X) – ĝ(0, X) – θATTE

ML < 0
]
⩾

1 – α
2

.

We proceed by assuming that the former holds; the case when the latter holds can be handled in
exactly the same way.

Define the event Eδ =
{

ĝ(1, X) – ĝ(0, X) – θATTE
ML > δ

}
, then

lim
δ→0

P [Eδ] ⩾
1 – α

2
,

so there exists δ0 > 0 such that

P
[
Eδ0

]
⩾

1 – α
3

.

Let Mα = 2⌊ 1–α
6 M⌋ and let Bj, 1 ⩽ j ⩽ M be chosen in a way such that Bj, 1 ⩽ j ⩽ Mα are (disjoint)

measurable subsets of Eδ0 with measure 1
M ; the remaining Bj’s can be chosen arbitrarily. Then we

define

u(x) =



1 x ∈ B2j–1, 1 ⩽ j ⩽ Mα/2

EX
[(

ĝ(1, X) – ĝ(0, X) – θATTE
ML

)
1

{
X ∈ B2j–1

}]
EX
[(

ĝ(1, X) – ĝ(0, X) – θATTE
ML

)
1

{
X ∈ B2j

}] x ∈ B2j, 1 ⩽ j ⩽ Mα/2

0 otherwise.

Specifically, u(x) is constant in each Bj. Moreover, note that the denominator in the second case is
bounded away from zero, since these regions are subsets of Eδ0 . First, it is easy to see that this choice
of u guarantees that

EX
[
u(X)

(
ĝ(1, X) – ĝ(0, X) – θATTE

ML

)(
1

{
X ∈ B2j–1

}
– 1
{

X ∈ B2j
})]

= 0

for all j, so that Equation (35) holds.
Second, let

Cu = δ–1
0

(
2 +
∣∣∣θATTE

ML

∣∣∣) .

Our choice of Bj implies that for 1 ⩽ j ⩽ Mα/2, we have

EX
[(

ĝ(1, X) – ĝ(0, X) – θATTE
ML

)
1

{
X ∈ B2j

}]
⩾ δ0 · P

[
X ∈ B2j

]
=
δ0
M

and

EX
[(

ĝ(1, X) – ĝ(0, X) – θATTE
ML

)
1

{
X ∈ B2j–1

}]
⩽
(
2 sup

d,x
ĝ(d, x) +

∣∣∣θATTE
ML

∣∣∣ )P[X ∈ B2j–1]

⩽
(
2 +
∣∣∣θATTE

ML

∣∣∣ ) 1
M

.
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As a consequence, we have
u(x) ⩽ Cu, ∀x ∈ [0, 1]K .

Finally, since P
[
u(X) = 1

]
= Mα

2M and u(x) ⩾ 0 for all x, we can deduce that

EX

[
u(X)

m̂(X) (1 – m̂(X))

]
⩾

Mα

2M
⩾ 0.1(1 – α).

Hence, the u(x) that we choose satisfies all the required conditions, concluding the proof.

Returning to our proof of Theorem 5, let u(x) and ∆(λ, x) be the function chosen in Lemma 11
and let

v(x) =
1 – m̂(x)

m̂(x)
. (37)

We define

gλ(0, x) = ĝ(0, x) + α
v(x)

1 – mλ(x)
∆(λ, x)

gλ(1, x) = ĝ(1, x)
mλ(x) = m̂(x) – βu(x)∆(λ, x).

(38)

where α,β are constants that will be specified later. Then one can easily derive the following results:

Proposition 4. We have

Eλ

[
mλ(x)

]
= m̂(x)

Eλ

[
(1 – mλ(x)) gλ(0, x)

]
= ĝ(0, x) (1 – m̂(x)) ,

Proof. By Proposition 1, we have

Eλ

[
mλ(x)

]
= m̂(x) – βu(x)Eλ

[
∆(λ, x)

]
= m̂(x)

Eλ

[
(1 – mλ(x)) gλ(0, x)

]
= ĝ(0, x)Eλ

[
1 – mλ(X)

]
+ αv(x)Eλ

[
∆(λ, x)

]
= ĝ(0, x) (1 – m̂(x)) .

As in Section 4, we can bound the L2 distance between gλ, mλ and ĝ, m̂ respectively.

Lemma 12. Suppose that α ⩽ 1,β ⩽ 1
4 C–1

u (where Cu is defined in Lemma 11), then the following holds
for all 0 < r ⩽ +∞:∥∥gλ(0, X) – ĝ(0, X)

∥∥
PX ,r ⩽ 2c–1α,

∥∥mλ(X) – m̂(X)
∥∥

PX ,r ⩽ c–1β.

Remark 4. Due to the difference in construction, the bounds in the lemma above are in the forms of O(α)
and O(β) rather than O(α + β) and O(β) that we encountered in the case of the WATE. This is the reason
why we don’t need to consider the two cases en ⩾ fn and en < fn separately for ATTE.

Let Qλ be the joint distribution of (X, D, Y) induced by gλ and mλ and µ be the uniform
distribution on [0, 1]K × {0, 1} × {0, 1}. Define qλ = dQλ

dµ . Similarly, let P̂ be the joint distribution

of (X, D, Y) induced by ĝ and m̂, and p̂ = dP̂
dµ . Using exactly the same arguments as we did in Lemma

3 and 4, one can prove the following lemmas.
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Lemma 13. Let Q =
∫

Qλdπ(λ) and q = dQ
dµ =

∫
qλdπ(λ), then p̂ = q.

Lemma 14. For any δ > 0, as long as M ⩾ max{n, 32C
c4δ

n2} where c is the constant introduced in
Assumption 3 and C is the constant implied by Theorem 6 for A = 4c–2, we have

H2
(

P̂⊗n,
∫

Q⊗n
λ dπ(λ)

)
⩽ δ.

Lemma 15. Let
α =

c
4
√

en, β =
1
4

min{c, cu}
√

fn,

then for sufficiently large n, we have (mλ, gλ) ∈ Fen,e′n,fn and

θATTE
λ ⩽ θATTE

ML –
1
2

cuαβ, ∀λ ∈ {0, 1}M/2 (40)

Proof. Since en, fn = o(1)(n → +∞), we have α ⩽ 1
4 c and β ⩽ 1

4 cuc3C–2
u for sufficiently large n. In the

remaining part of the proof, we assume that this inequality holds.
First, by Lemma 12 it is easy to see that∥∥m̂(X) – mλ(X)

∥∥
PX ,2 ⩽ 2c–1β ⩽

√
fn∥∥ĝ(1, X) – gλ(1, X)

∥∥
PX ,2 ⩽ 2c–1α ⩽

√
en

and 0 ⩽ mλ, gλ ⩽ 1, so that (mλ, gλ) ∈ Fen,e′n,fn .
It remains to prove Equation (40). For fixed λ, we have

θATTE
λ := EX

[
gλ(1, X) – gλ(0, X) | D = 1

]
= EX

[
(gλ(1, X) – gλ(0, X))

mλ(X)
Pλ[D = 1]

]

=
EX
[
(ĝ(1, X) – ĝ(0, X)) mλ(X) – αv(x)mλ(X)

1–mλ(x) ∆(λ, x)
]

EX
[
mλ(X)

]
=
EX
[
(ĝ(1, X) – ĝ(0, X)) (m̂(X) – βu(X)∆(λ, X)) – αv(x)mλ(X)

1–mλ(x) ∆(λ, x)
]

EX
[
mλ(X)

]
=
EX
[
(ĝ(1, X) – ĝ(0, X)) m̂(X)

]
– βEX

[
u(X) (ĝ(1, X) – ĝ(0, X))∆(λ, X)

]
EX
[
m̂(X)

]
– βEX

[
u(X)∆(λ, X)

]
–
(
EX
[
mλ(X)

])–1
αEX

[(
1 +

mλ(X) – m̂(X)
m̂(X) (1 – mλ(X))

)
∆(λ, X)

]
=: A – B

(41)

where the third line follows from the fact that gλ(0, x) – ĝ(0, x) = αv(x)
1–mλ(x)∆(λ, x) and the fourth line

from the fact that m̂(X) – βu(X)∆(λ, X) = mλ(x), according to Equation (38).

Recall that θATTE
ML = EX[(̂g(1,X)–ĝ(0,X))m̂(X)]

EX[m̂(X)] and

EX
[
u(X) (ĝ(1, X) – ĝ(0, X))∆(λ, X)

]
– θATTE

ML EX
[
u(X)∆(λ, X)

]
= 0
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by our choice of u in Lemma 11, so the first term A in Equation (41) equals θATTE
ML , since:

A =
θATTE

ML EX[m̂(X)] – βEX
[
u(X) (ĝ(1, X) – ĝ(0, X))∆(λ, X)

]
EX
[
m̂(X)

]
– βEX

[
u(X)∆(λ, X)

]
=
θATTE

ML EX[m̂(X)] – βθATTE
ML EX

[
u(X)∆(λ, X)

]
EX
[
m̂(X)

]
– βEX

[
u(X)∆(λ, X)

] = θATTE
ML

The second term can be further simplified as follows:

B =
(
EX
[
mλ(X)

])–1
αEX

[
mλ(X) – m̂(X)

m̂(X) (1 – mλ(X))
∆(λ, X)

]
= –αβ

(
EX
[
mλ(X)

])–1 EX

[
u(X)

m̂(X) (1 – mλ(X))
∆(λ, X)2

]
⩽ –αβEX

[
u(X)

m̂(X)(1 – mλ(X))

]
(42a)

= –αβEX

[
u(X)

m̂(X)(1 – m̂(X))

]
– αβEX

[
u(X)(mλ(X) – m̂(X))

m̂(X)(1 – m̂(X))(1 – mλ(X))

]
= –αβEX

[
u(X)

m̂(X)(1 – m̂(X))

]
+ αβ2EX

[
u(X)2∆(λ, X)

m̂(X)(1 – m̂(X))(1 – mλ(X))

]
⩽ –cuαβ + 2c–3C2

uαβ
2 ⩽ –

1
2

cuαβ (42b)

where Equation (42a) follows from 0 < mλ(X) < 1 and u(X) ⩾ 0, and Equation (42b) follows from∣∣mλ(x) – m̂(x)
∣∣ ⩽ βCu ⩽

1
2

c ⇒ 1
1 – mλ(x)

⩽ 2c–1

and β ⩽ 1
4 cuc3C–2

u . Hence, for all λ ∈ {–1, +1}M/2 we have

θATTE
λ ⩽ θATTE

ML –
1
2

cuαβ.

We are now ready to prove Theorem 5. We choose M sufficiently large according to Lemma 14,
P = {P̂}∪

{
Qλ : λ ∈ {0, 1}M/2

}
, P = P̂, π be the discrete uniform distribution on

{
Qλ : λ ∈ {0, 1}M/2

}
,

s = 1
2 cuαβ = Ω(

√
enfn) in the context of Theorem 7. Then all the listed conditions are satisfied for

the ATE functional

T(P) = –θATTE(P) = –EP
[
g(1, X) – g(0, X) | D = 1

]
.

Therefore, by Theorem 7, we obtain a lower bound

inf
θ̂

sup
P∈P

QP,1–γ

(∣∣∣θ̂({(Xi, Di, Yi)}N
i=1

)
– θWATE

∣∣∣2) = Ω(α2β2) = Ω (enfn) .

6. Conclusion

We investigate the statistical limit of treatment effect estimation in the structural-agnostic regime,
which is an appropriate lower bound technique when one wants to only consider estimation strategies
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that use generic black-box machine learning estimators for the various nuisance functions involved in
the estimation of treatment effects. We establish the minimax optimality of the celebrated and widely
used in practice doubly robust learning strategies via reducing the estimation problem to a hypothesis
testing problem, and lower-bound its error by non-standard constructions of the fuzzy hypotheses.
Our results show that these estimators are optimal, in the structure agnostic sense, even in the slow
rate regimes, where the implied rate for the functional of interest is slower than root-n. Hence, any
improvements upon these estimation strategies need to incroporate elements of the structure of the
nuisance functions and cannot simply invoke generic adaptive regression approaches as black-box
sub-processes. While the focus of this paper is on treatment effect estimation, we believe that our
techniques can be extended to address structure agnostic minimax lower bounds of more general
functional estimation problems.
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estimates. Sankhyā: The Indian Journal of Statistics, Series A, 381–393.

Bickel, PJ. 1982. On adaptive estimation. The Annals of Statistics 10 (3): 647.

Birgé, Lucien, and Pascal Massart. 1995. Estimation of integral functionals of a density. The Annals of Statistics 23 (1): 11–29.

Chen, Qizhao, Vasilis Syrgkanis, and Morgane Austern. 2022. Debiased machine learning without sample-splitting for stable
estimators. Advances in Neural Information Processing Systems 35:3096–3109.

Chen, Xiaohong, and Halbert White. 1999. Improved rates and asymptotic normality for nonparametric neural network
estimators. IEEE Transactions on Information Theory 45 (2): 682–691.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, and Whitney Newey. 2017.
Double/debiased/neyman machine learning of treatment effects. American Economic Review 107 (5): 261–265.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James
Robins. 2018. Double/debiased machine learning for treatment and structural parameters: double/debiased machine
learning. The Econometrics Journal 21 (1).

Chernozhukov, Victor, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K Newey, and James M Robins. 2022. Locally
robust semiparametric estimation. Econometrica 90 (4): 1501–1535.

Chernozhukov, Victor, Whitney K Newey, and Rahul Singh. 2022. Automatic debiased machine learning of causal and
structural effects. Econometrica 90 (3): 967–1027.

. 2023. A simple and general debiased machine learning theorem with finite-sample guarantees. Biometrika 110 (1):
257–264.

Farrell, Max H. 2015. Robust inference on average treatment effects with possibly more covariates than observations. Journal
of Econometrics 189 (1): 1–23.

Farrell, Max H, Tengyuan Liang, and Sanjog Misra. 2021. Deep neural networks for estimation and inference. Econometrica
89 (1): 181–213.



Working paper. 29

Foster, Dylan J, and Vasilis Syrgkanis. 2023. Orthogonal statistical learning. The Annals of Statistics 51 (3): 879–908.

Geer, Sara van de, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. 2014. On asymptotically optimal confidence regions
and tests for high-dimensional models. The Annals of Statistics 42 (3).

Heckman, James J, Hidehiko Ichimura, and Petra Todd. 1998. Matching as an econometric evaluation estimator. The review of
economic studies 65 (2): 261–294.

Hirano, Keisuke, Guido W Imbens, and Geert Ridder. 2003. Efficient estimation of average treatment effects using the
estimated propensity score. Econometrica 71 (4): 1161–1189.

Imbens, Guido W. 2004. Nonparametric estimation of average treatment effects under exogeneity: a review. Review of
Economics and statistics 86 (1): 4–29.

Imbens, GW, W Newey, and G Ridder. 2003. Mean-squared-error calculations for average treatment effects. department of economics,
uc berkeley.

Ingster, Yu I. 1994. Minimax detection of a signal in ℓp metrics. Journal of Mathematical Sciences 68:503–515.

Kennedy, Edward H, Sivaraman Balakrishnan, James M Robins, and Larry Wasserman. 2022. Minimax rates for heterogeneous
causal effect estimation. arXiv preprint arXiv:2203.00837.

Little, Roderick J, and Donald B Rubin. 2000. Causal effects in clinical and epidemiological studies via potential outcomes:
concepts and analytical approaches. Annual review of public health 21 (1): 121–145.

Liu, Lin, Rajarshi Mukherjee, Whitney K Newey, and James M Robins. 2017. Semiparametric efficient empirical higher
order influence function estimators. arXiv preprint arXiv:1705.07577.

Mayer, Alexander K. 2011. Does education increase political participation? The Journal of Politics 73 (3): 633–645.

Oreopoulos, Philip. 2006. Estimating average and local average treatment effects of education when compulsory schooling
laws really matter. American Economic Review 96 (1): 152–175.

Robins, James, Lingling Li, Eric Tchetgen, Aad van der Vaart, et al. 2008. Higher order influence functions and minimax
estimation of nonlinear functionals. In Probability and statistics: essays in honor of david a. freedman, 2:335–422. Institute of
Mathematical Statistics.

Robins, James, Eric Tchetgen Tchetgen, Lingling Li, and Aad van der Vaart. 2009. Semiparametric minimax rates. Electronic
journal of statistics 3:1305.

Robins, James M, Lingling Li, and Rajarshi Mukherjee. 2017. Minimax estimation of a functional on a structured high-
dimensional model. The Annals of Statistics 45 (5): 1951–1987.

Robins, James M, and Andrea Rotnitzky. 1995. Semiparametric efficiency in multivariate regression models with missing data.
Journal of the American Statistical Association 90 (429): 122–129.

Robins, James M, Andrea Rotnitzky, and Lue Ping Zhao. 1994. Estimation of regression coefficients when some regressors
are not always observed. Journal of the American statistical Association 89 (427): 846–866.

. 1995. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of
the american statistical association 90 (429): 106–121.

Rosenbaum, Paul R. 1989. Optimal matching for observational studies. Journal of the American Statistical Association 84 (408):
1024–1032.

Rosenbaum, Paul R, and Donald B Rubin. 1983. The central role of the propensity score in observational studies for causal
effects. Biometrika 70 (1): 41–55.

Rotnitzky, Andrea, Ezequiel Smucler, and James M Robins. 2021. Characterization of parameters with a mixed bias property.
Biometrika 108 (1): 231–238.

Schick, Anton. 1986. On asymptotically efficient estimation in semiparametric models. The Annals of Statistics 14 (3): 1139–
1151.

Schmidt-Hieber, Anselm Johannes. 2020. Nonparametric regression using deep neural networks with relu activation function.
Annals of statistics 48 (4): 1875–1897.

Syrgkanis, Vasilis, and Manolis Zampetakis. 2020. Estimation and inference with trees and forests in high dimensions. In
Conference on learning theory, 3453–3454. PMLR.



30 Jikai Jin et al.

Tao, Yebin, and Haoda Fu. 2019. Doubly robust estimation of the weighted average treatment effect for a target population.
Statistics in medicine 38 (3): 315–325.

Tsybakov, Alexandre B. 2008. Introduction to nonparametric estimation. Springer Science & Business Media.

Vaart, Aad van der. 2014. Higher order tangent spaces and influence functions. Statistical science 29 (4): 679–686.

Wager, Stefan, and Susan Athey. 2018. Estimation and inference of heterogeneous treatment effects using random forests.
Journal of the American Statistical Association 113 (523): 1228–1242.

Wager, Stefan, and Guenther Walther. 2015. Adaptive concentration of regression trees, with application to random forests.
arXiv preprint arXiv:1503.06388.

Wood, Lesley, Matthias Egger, Lise Lotte Gluud, Kenneth F Schulz, Peter Jüni, Douglas G Altman, Christian Gluud, Richard
M Martin, Anthony JG Wood, and Jonathan AC Sterne. 2008. Empirical evidence of bias in treatment effect estimates
in controlled trials with different interventions and outcomes: meta-epidemiological study. bmj 336 (7644): 601–605.

Zou, Hui, and Trevor Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical
Society Series B: Statistical Methodology 67 (2): 301–320.



Working paper. 31

Appendices
In the appendix we provide the proofs of Theorem 2, Theorem 3 and the O (1/n) lower bound in
Theorem 4 and Theorem 5. The proofs of these results are all relatively standard and are implicit in
prior works.

A. Proof of Theorem 2

We define

θ̄WATE = Ew(X)
[
ĝ(1, X) – ĝ(0, X) +

(
D

m̂(X)
–

1 – D
1 – m̂(X)

)
(Y – ĝ(D, X))

]
,

then Eθ̂WATE = θ̄WATE, which implies that

E
(
θ̂WATE – θ̄WATE

)2
⩽

1
n

Var
(
θ̂WATE

)
≲

1
n
∥w∥2

PX ,2.

On the other hand,∣∣∣θ̂WATE – θ̄WATE
∣∣∣

⩽ Ew(X)
∣∣∣∣1 –

m0(X)
m̂(X)

∣∣∣∣ ∣∣g0(1, X) – ĝ(1, X)
∣∣ + Ew(X)

∣∣∣∣1 –
1 – m0(X)
1 – m̂(X)

∣∣∣∣ ∣∣g0(0, X) – ĝ(0, X)
∣∣

⩽ |0w|0∞ ·
(
E
∣∣∣∣1 –

m0(X)
m̂(X)

∣∣∣∣ ∣∣g0(1, X) – ĝ(1, X)
∣∣ + E

∣∣∣∣1 –
1 – m0(X)
1 – m̂(X)

∣∣∣∣ ∣∣g0(0, X) – ĝ(0, X)
∣∣)

⩽ c–1|0w|0∞|0m0(X) – m̂(X)|0PX ,2 ·
(∣∣0g0(0, X) – ĝ(0, X)

∣∣ 0PX ,2 +
∣∣0g0(1, X) – ĝ(1, X)

∣∣ 0PX ,2
)

= O
(

|0w|0∞
√

max{rn, r′n}sn
)

.

Combining the above inequalities, we have

E
(
θ̂WATE – θWATE

)2
= O

(
max{rn, r′n} · sn · |0w|02

∞ +
1
n

)
and the desired high-probability bound follows directly from Markov’s inequality.

B. Proof of Theorem 3

Since E[D] = EX[m0(X)] and Di, i = 1, 2, · · · , n are i.i.d. Bernoulli variables, by central limit theorem
there exists constant C̃δ,1 > 0 such that∣∣∣∣∣1n

n∑
i=1

Di – E[D1]

∣∣∣∣∣ ⩽ Cδ,1

√
Var(D1)

n
with probability ⩾ 1 –

1
2
δ. (43)
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Hence with probability ⩾ 1 – δ, we have∣∣∣θ̂ATTE – θATTE
∣∣∣

≲
1√
n

+ (E[m0(X)])–1
∣∣∣∣(En – E)

(
D (Y – ĝ(0, X)) –

m̂(X)
1 – m̂(X)

(1 – D)(Y – ĝ(0, X))
)∣∣∣∣

+ E
∣∣∣m0(X) (g0(1, X) – g0(0, X)) – m0(X) (g0(1, X) – ĝ(0, X))

– m̂(X)
1 – m0(X)
1 – m̂(X)

(g0(0, X) – ĝ(0, X))
∣∣∣

≲
1√
n

+ E
∣∣∣ (m0(X) – m̂(X))(g0(0, X) – ĝ(0, X))

1 – m̂(X)

∣∣∣
≲

1√
n

+
√

rnsn,

where En denotes the empirical average in the second term of the second line, and this term is
bounded by O

(
1√
n

)
with high probability. This concludes the proof.

C. Proof of theΩ(n–1) lower bound in Theorem 4

We define
g(0, x) = ĝ(0, x)
g(1, x) = ĝ(1, x) + ξw(x)

m(x) = m̂(x)
(44)

where ξ is a constant that will be specified later.
Let Q be the joint distribution of (X, D, Y) induced by g and m defined above, then its density

(w.r.t uniform measure) can be written as

q(x, d, y) = m(x)d(1 – m(x))1–dg(d, x)y(1 – g(d, x))1–y.

From Equation (44) one can deduce that

EX
[
w(x) (g(1, x) – g(0, x))

]
= EX

[
w(x) (ĝ(1, x) – ĝ(0, x))

]
+ ξ∥w∥2

PX ,2

and ∣∣q(x, d, y) – p̂(x, d, y)
∣∣ ⩽ ξ|w(x)|.

Moreover, by assumption we know that p̂(x, d, y) ⩾ c2, so we have that

H2(P̂, Q) ≲ ξ2∥w∥2
PX ,2.

By choosing ξ ≲ 1√
n∥w∥PX ,2

, one can guarantee that

H2(P̂⊗n, Q⊗n) ⩽ nH2(P̂, Q) ⩽ α,

so that the lower bound immediately follows from Theorem 7.
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D. Proof of theΩ(n–1) lower bound in Theorem 5

We consider the construction in Equation (44). For the ATTE, one can check that

EX
[
(g(1, X) – g(0, X))m(X)

]
EX[m(X)]

=
EX
[
(ĝ(1, X) – ĝ(0, X) + ξ)m̂(X)

]
EX[m̂(X)]

=
EX
[
(ĝ(1, X) – ĝ(0, X))m̂(X)

]
EX[m̂(X)]

+ ξ.

The lower bound then directly follows from repeating the remaining steps in Section C.
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