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Abstract

We contribute to advancing the understanding of Riemannian accelerated gradient meth-

ods. In particular, we revisit “Accelerated Hybrid Proximal Extragradient” (A-HPE), a pow-

erful framework for obtaining Euclidean accelerated methods [29]. Building on A-HPE,

we then propose and analyze Riemannian A-HPE. The core of our analysis consists of

two key components: (i) a set of new insights into Euclidean A-HPE itself; and (ii) a

careful control of metric distortion caused by Riemannian geometry. We illustrate our

framework by obtaining a few existing and new Riemannian accelerated gradient meth-

ods as special cases, while characterizing their acceleration as corollaries of our main

results.

1 Introduction

Convexity admits an elegant generalization beyond vector spaces to geodesic metric spaces. There,

through the lens of geodesic convexity one obtains a rich class of tractable nonconvex optimization

problems, which makes the study of geodesically convex optimization potentially of far-reaching

value. Main examples where geodesically convex optimization has been studied include certain

Riemannian manifolds [11, 30, 33, 35, 36], Hadamard spaces [8], and non-commutative groups [14].

The interest in geodesic convexity is paralleled by the development of optimization algorithms.

Early works prove convergence for Riemannian proximal-point [19, 21] and Riemannian analogs of

many other Euclidean methods [1, 30, 32], though these works in general do not exploit geodesic

convexity, and limit their analyses to asymptotic results. The work [37] is the first to provide

non-asymptotic rates (and iteration complexity) of first-order methods for geodesically convex op-

timization on Hadamard manifolds. Subsequent works establish iteration complexities for other

optimization methods on Riemannian manifolds, such as variance-reduced methods [31, 39], adap-

tive gradient methods [27], Newton-type methods [2, 23], among many others.

A key open question is whether it is possible to develop accelerated gradient methods on Rie-

mannian manifolds. Zhang and Sra [38] develop the first such method, and they show that the

method achieves acceleration in a small neighborhood of the global minimum. Later, Ahn and Sra

[4] show that a Riemannian version of Nesterov’s method converges globally, at a rate strictly faster

than gradient descent and eventually attains full acceleration, which is defined as follows:

Definition 1.1. We say that a gradient-based method eventually achieves acceleration if for optimiz-

ing an L-smooth, µ-geodesically strongly-convex function f , it outputs a sequence {wk}k≥1 with

computational complexity O(k) that satisfies

f (wk)− f ∗ = O ((1− τ1)(1− τ2) · · · (1− τk)) , (1.1)
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where τk ≥ c
µ
L for some constant c > 0, and limk→+∞ τk = Ω(

√
µ/L).

Motivation of this work. The abovementioned work leads one to wonder whether we can develop

methods that attain full acceleration from the start, without a “burn in” period. Unfortunately,

recent work [18, 22] shows that full acceleration is impossible in general, which suggests that the

best we can hope for is eventual acceleration.

Despite this recent progress on lower and upper bounds characterizing Riemannian acceleration,

there is a considerable gap between the study of acceleration in Euclidean space versus Riemannian

manifolds.1 While numerous Euclidean accelerated methods beyond the canonical one of Nesterov

have been studied, it is still unknown whether they also generalize to the Riemannian setting, and

as such, a systematic understanding of Riemannian acceleration is still lacking.

This gap motivates us to study Riemannian acceleration more closely. We start by revisiting Ac-

celerated Hybrid Proximal Extragradient (A-HPE), a powerful framework for convex optimization [29].

Indeed, it can be shown that Nesterov’s optimal method is a special case of A-HPE; Monteiro and

Svaiter [29] also propose a second-order method A-NPE, which is a specific implementation of

their framework and has complexity Õ
(
ε−2/7

)
for ε-suboptimality. A hitherto unknown property

of A-HPE is that it can recover a wide range of accelerated methods that have been independently

proposed in past literature, e.g., the accelerated extragradient descent method of Diakonikolas and

Orecchia [20], the algorithm with an extra gradient descent step in [16, Section 4], the extra-point

method of Huang and Zhang [24], among others.

The A-HPE framework also has implications beyond usual first-order methods. A-NPE is used

to design optimal second-order method in [7], and more generally, a number of works [13, 25] show

that A-HPE can also induce optimal higher-order methods for smooth convex functions. Carmon

et al. [15] considers a different setting where one has access to a ball oracle, and they show that

combining A-HPE with line search yields an accelerated method that is near-optimal. Moreover,

A-HPE was extended to strongly-convex functions in [6, 9].

Overview and main contributions. In light of the above motivation, we believe that A-HPE can

help us uncover fundamental ideas behind the acceleration phenomenon. The main goal of this

paper is to propose a Riemannian version of A-HPE and provide global convergence guarantees for

this framework. To that end, the key contributions of our work may be summarized as follows:

– We revisit Euclidean A-HPE in Section 2, and propose to view it as the linear coupling of two

approximate proximal point iterates. This viewpoint produces a simple, new analysis of A-HPE.

– We introduce Riemannian A-HPE in Section 3, which we analyze by following our Euclidean ap-

proach, while localizing the challenges posed by Riemannian geometry. Specifically, we discover

that besides the metric distortion that appears in previous works [4, 38], there is an additional

distortion that must be controlled.

– In Section 3.4, we first consider the case without additional distortion, for which we prove global

eventual acceleration that not only generalizes [4], but also offers global guarantees for some other

Riemannian counterparts of Euclidean first-order accelerated methods.

– In Section 3.5, we then tackle the general case with additional distortion, which we handle by

leveraging geometric bounds on Riemannian manifolds. For this general case, we obtain new

local acceleration results akin to [38].

– Finally, in Section 4, we discuss a number of accelerated first-order methods as special cases.

1We limit our discussion to the convex case, and refer the reader to the recent work [17] that studies acceleration for

non-geodesically-convex problems on manifolds.
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Algorithm 1: Accelerated hybrid proximal extragradient (A-HPE) method

Input : Objective function f , initial point x0, step size λk > 0, k = 1, 2, · · · , a sequence {σk} in

[0, 1], initial weight A0 ≥ 0

1 z0 = x0

2 for k = 1, 2, · · · do

3 ak+1 ←
(1+2µAk)λk+1+

√
(1+2µAk)

2λ2
k+1+4(1+µAk)Akλk+1

2

4 Ak+1 ← Ak + ak+1

5 yk ← xk +
ak+1(1+µAk)

Ak+1+µ(ak+1Ak+Ak Ak+1)
(zk − xk)

6 εk ← σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2

7 choose (xk+1, vk+1) ∈ iprox f (yk, λk, εk)

8 zk+1 ← zk +
ak+1

1+µAk+1
(µ (xk+1 − zk)− vk+1)

Notation and terminology. Throughout the paper 〈·, ·〉 denotes inner product in a Euclidean space,

and ‖ · ‖ its induced norm. For a closed convex set X ∈ R
d, we define the projection PX (x) :=

argminy∈X ‖x − y‖. For a convex function f : R
d → R, the proximal mapping of f is given by

prox f (x) := arg minu∈Rd f (u) + 1
2‖u− x‖2. For a µ-strongly convex function f : R

d → R, we define

the quadratic function fw(x) := f (w) + 〈x− w,∇〉+ µ
2 ‖x− w‖2 for w ∈ R

d and ∇ ∈ ∂ f (w), so that

fw(x) ≤ f (x) for all x.

2 A New Analysis of Euclidean A-HPE

We now revisit the Euclidean A-HPE framework—see Algorithm 1. We propose to analyze A-HPE

via the proximal point method, leading to a novel analysis that is simpler and more intuitive (in

our opinion) than previous approaches [6, 9]. More importantly, this analysis helps us develop

Riemannian A-HPE, our main focus.

Throughout this section we assume that f is µ-strongly-convex. Our description follows [9] and

relies on the key concept of inexact proximal operators. Our definition below is equivalent to the one

in [9, Definition 2.3] that relies on the primal-dual gap of a proximal function. We use our version

for ease of analysis. Appendix A provides additional intuition on this concept by relating it to

ε-subgradients.

Definition 2.1. [9, Lemma 2.4] We write (x, v) ∈ iprox f (y, λ, ε) if

1

2(1 + λµ)2
‖x− y + λv‖2 +

λ

1 + λµ

(
f (x)− f (w)− 〈x−w, v〉+ µ

2
‖x−w‖2

)
≤ ε, (2.1)

where w ∈ R
d satisfies v− µx + µw ∈ ∂ f (w) and ε ≥ 0.

If ε = 0 and w = x, then v ∈ ∂ f (x) and x + λv = y, which recovers the exact proximal operator.

With Definition 2.1 in hand, up to the specification of the sequences {λk} and {σk}, all steps of

Algorithm 1 are implementable. Hence, we are ready to state the main result of this section.

Theorem 2.2. For the iterates produced by Algorithm 1, we have the function suboptimality bound

f (xk)− f (x∗) ≤ A0( f (x0)− f (x∗)) + 1+µA0

2 ‖x0 − x∗‖2

Ak
= O

(
Π

k−1
i=1

(
1 + max

{
µλi,

√
µλi

})−1)
.
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Assuming that f is also L-smooth, a number of first-order methods (including Nesterov’s method)

can be considered as a special cases of Algorithm 1, with the choice λi = O(1/L). Theorem 2.2 then

implies that these methods have the optimal convergence rate of O
(
(1 +

√
µ/L)−k

)
. We do not

present concrete examples here since this is not our main focus, but we will include detailed discus-

sions about such special cases for the Riemannian setting later in the paper.

2.1 Overview of the proof of Theorem 2.2

We now overview our proof technique for Theorem 2.2, which sheds light on the specific parameter

choices and updates that comprise Algorithm 1. To aid exposition, we trade simplicity for rigor in

our overview below, and defer a fully rigorous proof to Appendix B.

Motivated by [3, 5], we view Algorithm 1 as a combination of two approximate PPM (proximal

point method) updates, each using a different notion of approximation. The first uses the inexact

proximal operator from Definition 2.1, while the second arises from minimizing a quadratic lower-

approximation of f . When properly combined, these two steps allow us to prove the following

theorem that immediately implies Theorem 2.2.

Theorem 2.3. The potential function pk := f (xk) +
1+µAk

2 ‖zk − x∗‖2 is decreasing for all k ≥ 0.

The potential function in Theorem 2.3 has two terms: the objective f (xk) and a distance term

involving ‖zk − x∗‖2. We analyze these terms separately; they are associated with the two approxi-

mate PPM steps alluded to above, and the amount they change with k must be carefully combined

to ensure pk ≥ pk+1. We start with Lemma 2.4 to bound the change in function value.

Lemma 2.4. Denote ∇k+1 = vk+1 + µ (wk+1− xk+1) ∈ ∂ f (wk+1); when εk is small, we have

f (xk+1) . f (wk+1) +
1

2µ

(
‖vk+1‖2 − ‖∇k+1‖2

)
(2.2a)

≤ f (xk)− µ
2‖xk − xk+1 + µ−1vk+1‖2 + 1

2µ‖vk+1‖2. (2.2b)

The proof of Lemma 2.4 is given in Appendix B. Inequality (2.2b) is not exact; we omit an

additional term that depends on εk for ease of presentation. Inequality (2.2) can be understood as

a descent inequality for the function value at xk, albeit with an error term ‖vk+1‖. When this term is

large, we may no longer be able to control the change in function values.

Next, we bound the change in the distance term. Observe that Line 8 of Algorithm 1 is nothing

but zk+1 ← 1+µAk

1+µAk+1
zk +

µak+1

1+µAk+1

(
wk+1− µ−1∇k+1

)
= argminz{ fwk+1

(z) + 1+µAk

2ak+1
‖z − zk‖2}, where

fwk+1
(z) := f (wk+1) + 〈∇k+1, z−wk+1〉 + µ

2‖z − wk+1‖2 is a lower quadratic approximation of f .

Lemma 2.5 then helps us bound this change.

Lemma 2.5 (Approximate distance change). When εk is small, we have

1+µAk

2 ‖zk − x∗‖2 − 1+µAk+1

2 ‖zk+1 − x∗‖2

≥ ak+1( f (wk+1)− f (x∗)) + µak+1(1+µAk)
2(1+µAk+1)

‖zk − wk+1 + µ−1∇k+1‖2 − ak+1

2µ ‖∇k+1‖2 (2.3a)

& ak+1( f (xk+1)− f (x∗)) + µak+1(1+µAk)
2(1+µAk+1)

‖zk − xk+1 + µ−1vk+1‖2 − ak+1

2µ ‖vk+1‖2 . (2.3b)

Note that (2.3a) is very similar to the prox-grad inequality [10, Theorem 10.16] and the funda-

mental inequality of mirror descent [5, Section 2.2] that imply contraction of distance with a proximal

iteration. Inequality (2.3b) is not exact since it depends on εk. Again, the term ‖vk+1‖ prevents us

from directly deducing contraction of the distance to x∗.
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The inequalities in Lemma 2.4 and Lemma 2.5 reveal a challenge faced when proving descent of

the potential function: we must control the magnitude of vk+1. Specifically, consider the situation

where the positive terms ‖xk − xk+1 + µ−1vk+1‖ in (2.2b) and ‖zk − xk+1 + µ−1vk+1‖ in (2.3b) are

small but ‖vk+1‖ is large. But when εk is small, Definition 2.1 also implies that xk+1 − yk ≈ −λkvk+1,

which further implies that yk − xk+1 + µ−1vk+1 ≈
(
µ−1 + λk

)
vk+1 is large. This observation suggests

that a contradiction is arrived at if we choose yk on the line segment connecting xk and zk, i.e.,

yk = τxk + (1− τ)zk. Why? Since in this case, if yk − xk+1 + µ−1vk+1 is large, then we can directly

deduce that (a convex combination) of the terms ‖xk − xk+1 + µ−1vk+1‖ and ‖zk − xk+1 + µ−1vk+1‖
is large using Cauchy-Schwarz. Remarkably, this argument suggests that we should choose τ such

that τ : 1− τ is equal to ratio of the coefficients of ‖xk− xk+1 +µ−1vk+1‖2 and ‖zk− xk+1 +µ−1vk+1‖2.

Therefore we can use these terms to cancel out the error induced by vk+1, and ultimately attain the

desired potential function descent, leading to Theorem 2.3.

3 From Euclidean to Riemannian A-HPE

We are now ready to generalize Euclidean A-HPE to the Riemannian setting (more precisely, to

Hadamard manifolds). In Section 3.1 we recall key notation for the Riemannian setting, and Sec-

tion 3.2 is dedicated to the analysis of our proposed framework, Riemannian A-HPE.

3.1 Riemannian preliminaries and notation

We refer the readers to standard textbooks, e.g., [26, 28] for an in-depth introduction; we recall below

key notation and concepts.

A smooth manifoldM is called a Riemannian manifold if an inner product 〈·, ·〉x is defined in the

tangent space TxM for all x ∈ M and the inner product varies smoothly in x. In this section, we

use the notation 〈·, ·〉 and omit the dependence on x, since it is clear from the context. We define

‖ · ‖ to be the norm induced by the inner product i.e., ‖v‖ :=
√
〈v, v〉.

A curve onM is called a geodesic if it is locally distance-minimizing. The exponential map, denoted

by Expx, maps a vector v ∈ TxM to a point y ∈ M such that there exists a geodesic γ : [0, 1] →M
such that γ(0) = x, γ(1) = y and γ′(0) = v. We assume that the sectional curvature of M is

non-positive and lower bounded by −K, where K is a positive real number. Under this assumption,

any two points on M are connected by a unique geodesic, and thus the inverse exponential map

Exp−1
x :M→ TxM is well-defined.

We use d(x, y) to denote the Riemannian distance between x and y. The definition of exponential

map implies that d(x, y) =
∥∥Exp−1

x (y)
∥∥. We will also use the tangent space distance: dw(x, y) :=

‖Exp−1
w (x) − Exp−1

w (y)‖. Note that dw(x, y) ≤ d(x, y) for all w, x, y ∈ M. We say that a function

f :M→ R is µ-geodesically-strongly-convex for µ ≥ 0, if for any x ∈ M there exists a non-empty

set ∂ f (x), such that for all y ∈ M and v ∈ ∂ f (x) we have

f (y) ≥ f (x) + 〈v, Exp−1
x (y)〉+ µ

2 d2(x, y).

Thus fx(y) := f (x) + 〈v, Exp−1
x (y)〉+ µ

2 d2(x, y) is a lower approximation of f .

We use Γ
y
x to denote the parallel transport from TxM to TyM along the geodesic connecting

x and y. Using parallel transport, we can define a natural generalization of L-smoothness to the

Riemannian setting. We say that f :M→ R is L-smooth if for all x, y ∈ M, we have

∥∥Γ
y
x∇ f (x)−∇ f (y)

∥∥ ≤ L · d(x, y). (3.1)
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3.2 The proposed Riemannian A-HPE framework

In this section, we first present a straightforward generalization of Euclidean A-HPE (Algorithm 1)

to the Riemannian setting—see Algorithm 2. Then, we introduce a number results useful in its

convergence analysis. Our presentation largely follows the Euclidean setting, except for a number

of new challenges posed by Riemannian geometry. Throughout, we assume that f is µ-geodesically

strongly convex, and that the sectional curvature ofM lies in [−K, 0].

Algorithm 2: Riemannian accelerated hybrid proximal extragradient method

Input : Objective function f , initial point x0, ‘reference’ step size λ > 0, σk ∈ (0, 1) and initial

weights A0, B0 ≥ 0

1 z0 ← x0

2 for k = 0, 1, · · · do

3 choose a valid distortion rate δk according to Lemma 3.4

4 θk ← the smaller root of Bk(1− θ)2 = µλkθ
(
(1− θ)Bk +

µ
2 δk Ak

)

5 Bk+1 ← Bk
θkδk

, ak+1 ← 2µ−1(1− θk)Bk+1 and Ak+1 ← Ak + ak+1

6 yk ← Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)

7 choose (xk+1, vk+1) ∈ iprox
wk+1

f (yk, λk, εk) with εk =
σ2

k

2(1+λkµ)2 d2
wk+1

(xk+1, yk)

8 zk+1 ← Expwk+1

(
(1− θk)Exp

−1
wk+1

(xk+1) + θkExp
−1
wk+1

(zk)− 1−θk
µ vk+1

)

Beyond the natural replacement of vector space operations with their Riemannian counterparts,

there are two key differences between Algorithm 1 and Algorithm 2: (i) the latter uses a Riemannian

version of the iprox operator; and (ii) it uses additional parameters (Bk and δk) in its updates. We

define the Riemannian iprox operator as follows.

Definition 3.1 (Riemannian inexact proximal operator). For x, y, w ∈ M, v ∈ TwM and λ, ε ≥ 0, we

write (x, v) ∈ iproxw
f (y, λ, ε) if we have the inequality

‖Exp−1
w (x)− Exp−1

w (y) + λv‖2

2(1 + λµ)2
+

λ
(

f (x)− f (w)−
〈
Exp−1

w (x), v
〉
+ µ

2 d2(x, w)
)

1 + λµ
≤ ε, (3.2)

and v− µExp−1
w (x) ∈ ∂ f (w).

Key among the additional parameters is δk, the distortion rate that is used to model the non-

linearity of the exponential map. The concept of distortion rate is not new, and was introduced

in [4] to analyze potential function decrease. We will formally define it in Definition 3.3. By setting

δk = 0 and Bk =
1+µAk

2 , Algorithm 2 recovers Algorithm 1 in the Euclidean setting. Before discussing

technical details, let us give an informal statement of our main result. In subsequent sections,

we sketch its proof and provide the formal statements, while full, rigorous proofs are deferred

to Appendix C.

Theorem 3.2 (informal version of Theorem 3.7 and Theorem 3.12). Under mild conditions on the choice

of wk+1, for µ-strongly convex and L-smooth function f , the following statements hold:

(1). Suppose wk+1 lies on the geodesic between xk and zk, then the iterates {xk} generated by Algorithm 2

eventually achieve acceleration (cf. Definition 1.1) with arbitrary initialization.
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(2). In the general case, the iterates {xk} achieve acceleration as long as the initialization is in aO
(
K−1/2

(
µ/L
)3/4)

neighbourhood of x∗.

As we will see later, the Riemannian analogs of Nesterov’s method considered in [38] and [4]

belong to the first case in Theorem 3.2, and thus, follow as corollaries of our main result. We will

also discuss additional instances of each case in Section 4.

3.3 Potential Function Analysis for Riemannian A-HPE

Similar to the Euclidean setting, we define the potential function

pk = Ak · ( f (xk)− f (x∗)) + Bk · d2
wk
(zk, x∗). (3.3)

Note that in the above definiton, we use the tangent space distance dwk
rather than the Riemannian

distance d. Indeed, when generalizing our analysis to the Riemannian setting, we need to work with

vectors in tangent spaces, so that it is more convenient to use the tangent space distance here.

Our Euclidean analysis is based on a separate analysis of two approximate PPM schemes,

one leading to Lemma 2.4 for function value, and the other leading to Lemma 2.5 for distance

to x∗. While it is straightforward to generalize Lemma 2.4 to the Riemannian setting by using

strong-convexity and Definition 3.1, it is hard to bound the distance term Bk · d2
wk
(zk, x∗) − Bk+1 ·

d2
wk+1

(zk+1, x∗) because it involves vectors in two different tangent spaces Twk
M and Twk+1

M. Tak-

ing cue from [4], we also use the notion of distortion rates to overcome this issue.

Definition 3.3. We say that δk > 0 is a valid distortion rate if d2
wk+1

(zk, x∗) ≤ δkd2
wk
(zk, x∗).

To be able to use valid distortion rates in an actual algorithm, it is crucial to avoid dependence

on the unknown optimal point x∗. To that end, the next lemma shows that one can obtain a valid

distortion rate in terms of d(wk, zk) instead.

Lemma 3.4 ([4, Lemma 4.1]). For any points x, y, z ∈ M, we have d2(x, y) ≤ TK(d(x, z))d2
z(x, y), where

the function TK(·) is defined as

TK(r) :=





max
{

1 + 4
( √

Kr
tanh(

√
Kr)
− 1
)
,
( sinh(2

√
K·r)

2
√

K·r
)2}

, if r > 0,

1, if r = 0.

In particular, δk = TK(d(wk, zk)) is a valid distortion rate.

Assuming access to valid distortion rates, we can obtain the Riemannian analog to Lemma 2.5.

Lemma 3.5. Suppose that δk > 0 is a valid distortion rate, and Bk+1 =
Bk

θkδk
, then

Bkd2
wk
(zk, x∗)− Bk+1d2

wk+1
(zk+1, x∗) ≥ (1− θk)Bk+1

(
2
µ ( f (wk+1)− f (x∗))− 1

µ2‖∇k+1‖2

+ θk

∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥2)
.

Now, it remains to combine the two PPM schemes (based on function value and distance to x∗)
to obtain a bound for the potential function. Specifically, we can prove the following key lemma.
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Lemma 3.6. Let ak+1 = Ak+1− Ak =
2
µ (1− θk)Bk+1, and pk be given by (3.3). Then,

pk − pk+1 ≥ µ
2 (θkak+1 + Ak)

∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥2

+ Ak+1

2λkσk

∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥2

+ µθkak+1Ak

2(Ak+θkak+1)
d2

wk+1
(xk, zk)− σk Ak+1

2λk
d2

wk+1
(xk+1, yk)− Ak+1

2µ ‖vk+1‖2,

(3.4)

where

y′k = Expwk+1

( Ak
Ak+θkak+1

Exp−1
wk+1

(xk) +
θkak+1

Ak+θkak+1
Exp−1

wk+1
(zk)

)
. (3.5)

The main feature of Lemma 3.6 is the presence of a new point y′k in (3.4). In the Euclidean setting,

we combined the two approximate PPM schemes by choosing yk on the line segment between xk and

zk. Generalizing this update rule to the Riemannian setting, we naturally choose yk on the geodesic

connecting xk and zk. However, here a subtle complication arises: since we are working with

vectors in the tangent space Twk+1
, what we really want is that Exp−1

wk+1
(yk) be a convex combination

of Exp−1
wk+1

(xk) and Exp−1
wk+1

(zk). This subtlety explains why y′k as defined by (3.5) appears in the

bound (3.4). Further, note that since y′k depends on wk+1, it cannot be used as the update rule of yk.

In Euclidean A-HPE, y′k does not complicate matters since we always have yk = y′k. However,

yk 6= y′k in general for the Riemannian setting, which prevents us from mimicking the Euclidean

analysis. Indeed, Lemma 3.6 highlights an additional distortion that arises for Riemannian A-HPE and

is not present in previous works that focus on Nesterov’s method [4, 38]. Indeed, the algorithms

analyzed in these previous works are a special case of the general A-HPE framework, where the

particular specialization of the updates bypasses the additional distortion that arises more generally.

We expand on these observations below.

3.4 Basic A-HPE: convergence without additional distortion

We first consider the special case where yk = y′k. This equality holds as long as wk+1 is chosen on

the geodesic connecting xk and zk. In this case, we can derive potential decrease from Lemma 3.6

by using an analysis similar to the Euclidean setting. Doing so, we obtain the following main result

regarding the convergence rate of Riemannian A-HPE.

Theorem 3.7. Suppose in Algorithm 2, we choose λk = λ and wk+1 lies on the geodesic connecting xk and

zk such that d(wk+1, yk) = O(1), then we have

f (xk)− f (x∗) ≤ p0/Ak, and lim
k→+∞

Ak+1/Ak = 1 + µλ +
√

µλ(1 + µλ). (3.6)

Proof sketch: The first inequality follows directly from potential decrease. Define ξk = ak/Ak, then it

suffices to show that limk→+∞ ξk =
√

µλ
1+µλ . The proof relies on the following recursive equation:

δkξk+1

(
ξk+1 − µλ/1+µλ

)
= ξ2

k(1− ξk+1). (3.7)

If δk = 1, then we can show that {ξk} converges to the fixed point of (3.7), which is
√

µλ
1+µλ . In our

setting, δk is not constant, but potential decrease implies that δk − 1 converges to 0 at a linear rate.

Therefore, we can still obtain the desired result. �

The assumption d(wk+1, yk) = O(1) ensures that the iterates of Algorithm 2 are uniformly

bounded; otherwise the distortion error can become arbitrarily large. This assumption is trivially

true when wk+1 = yk, which holds for a number first-order methods that we will discuss in Sec-

tion 4. Theorem 3.7 also immediately implies the following result, which plays a crucial role when

studying first-order methods as special cases of Algorithm 2.
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Corollary 3.8. Suppose that f is L-smooth and λk = λ = Θ (1/L). Under the conditions in Theorem 3.7,

Algorithm 2 eventually achieves acceleration.

Finally, we bound the number of iterations sufficient for achieving full acceleration.

Theorem 3.9. Under the assumptions in Theorem 3.7, if f is L-smooth and λk = λ = O(1/L), then we

have ξk ≥ 1
2

√
µλ

1+µλ after T = Õ(L/µ) iterations, where Õ hides logarithmic terms. As a result, Algorithm 2

achieves acceleration in at most Õ(L/µ) iterations.

3.5 The general case of A-HPE: handling additional distortion

In general, we do not have yk = y′k, so that an additional distortion appears in the analysis of Rie-

mannian A-HPE. To overcome the challenge posed by this distortion, we take an approach that is

based on deriving an upper bound for the tangent space distance between yk and y′k. We need the

following lemma, which is a variant of [34, Section B.3].

Lemma 3.10. [34, Lemma 3] Let x ∈ M and y, a ∈ TxM. Let z = Expx(a), then

d (Expx(y + a), Expz (Γ
z
xy)) ≤ min{‖a‖, ‖y‖}SK (‖a‖+ ‖y‖),

where SK(r) = cosh(
√

Kr)− sinh(
√

Kr)/
√

Kr.

Note that a key feature of the function SK is that limr→0 SK(r) = 0. By using Lemma 3.10, we

can obtain an upper bound on dwk+1
(yk, y′k) in terms of SK(·) and a distance term.

Lemma 3.11. We have for all k ≥ 1 that

dwk+1
(yk, y′k) ≤ 2d∗(wk+1; xk, zk) · SK (d(xk, zk) + d∗(wk+1; xk, zk)) , (3.8)

where d∗(w; x, z) := min
{

d(w, y) | y = Expx(t · Exp−1
x (z)), t ∈ [0, 1]

}
is the distance from w to the geodesic

connecting x and z.

When d2
wk+1

(yk, y′k) is small, we can imagine that the algorithm still behaves similar to the yk = y′k
case studied in Section 3.4. From a technical standpoint, to lower-bound the potential difference

pk − pk+1, the key difference between the Riemannian setting with the Euclidean setting is the

presence of an additional negative term that depends on d2
wk+1

(yk, y′k). As a result, potential decrease

can still be guaranteed if the RHS of (3.8) is smaller than the positive terms. This yields our main

result for the convergence of Algorithm 2 in the general case, as stated below.

Theorem 3.12 (informal). Suppose that f is L-smooth, σk = σ ∈ (0, 1) and λk = λ = O(1/L). Under

regularity conditions on the choice of wk+1, if the initialization satisfies d(x0, x∗) = O
(
K−1/2(µ/L)3/4

)
and

B0 =
µ
2 A0 > 0, then potential decrease holds, and ξk := ak

Ak
= Θ

(√ µλ
1+µλ

)
.

Proof sketch: The proof is by induction on k. When k = 0, by using regularity conditions on w1, we

can derive an upper bound for the RHS of (3.8), which implies potential decrease. Now suppose

that potential decrease holds for k. By the definition of the potential function pk, we can show that

d2(xk, x∗) and d2(zk, x∗) = O(K−1(µ/L)1/2).
Note that the distortion rate δk ≤ 1 +O

(
Kd2(wk, zk)

)
, and under regularity conditions on wk

we can bound δk by 1 + O(
√

µ/L); ξk+1 can then be lower-bounded using the recursive equation

(C.9) and the lower bound for ξk. Finally, the RHS of (3.8) can be directly upper-bounded using the

bounds for xk, zk and regularity conditions on wk+1, which implies potential decrease for k + 1. �
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The regularity conditions on the sequence {wk} are described formally in Theorem C.16, and

they play a crucial role in Theorem 3.12. In short, they require that {wk} is not too far away from

the sequence {xk} and {zk}, since otherwise the algorithm may suffer from large distortion error.

Theorem 3.12 implies that as long as the initialization is inside a O(K−1/2(µ/L)3/4) neighbourhood

of the global minimum x∗, then it can achieve the accelerated rate.

Corollary 3.13. Under the assumptions of Theorem 3.12, we have

f (xk)− f (x∗) ≤ c1K−1L(µ/L)
3
2 ·
(
1− c2

√
µ/L
)k

,

for some numerical constants c1, c2 > 0.

4 Special cases of Riemannian A-HPE: acceleration of several first-order

methods

Inspired by Nesterov’s method, a number of different accelerated methods have been proposed in

the Euclidean setting [16, 20, 24]. These methods are empirically observed to be superior in some

aspects (e.g., robustness to noise, possibly smaller constants in convergence bounds, etc.) How-

ever, they are derived using a variety of very different techniques, which obscures their common

origin. In contrast, we observe that all of them can be deduced from A-HPE quite naturally and

straightforwardly.

At the same time, in the Riemannian setting only a generalized version of Nesterov’s method is

known to achieve acceleration [4, 38]. Can we design other accelerated methods, similar to those

in the Euclidean setting? The answer is “yes,” and we discuss below several special cases obtained

from our Riemannian A-HPE framework. We divide these special cases into two categories: (i)

those without additional distortion (Section 3.4), and which eventually attain acceleration with ar-

bitrary initialization due to Theorem 3.7; and (ii) those that can suffer additional distortion studied

in Section 3.5, for which local acceleration is ensured by Theorem 3.12. Detailed derivations of the

methods studied in this section are given in Appendix D.

4.1 Accelerated methods without additional distortion

Riemannian Nesterov’s method. Nesterov’s method has a direct generalization to the Riemannian

setting, as proposed and analyzed in [4, 38]; it takes the form:

yk = Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
,

xk+1 = Expyk
(−λ∇ f (yk)),

zk+1 = Expyk
(θkExp

−1
yk
(zk)− µ−1(1− θk)∇ f (yk)).

(4.1)

We can derive this algorithm from Algorithm 2 by choosing wk+1 = yk, xk+1 = Expyk
(−λk∇ f (yk))

and vk+1 = ∇ f (yk) + µExp−1
yk
(xk+1). Additional distortion is not present since wk+1 = yk. We

also recover the result of Ahn and Sra [4] that (4.1) can eventually achieve acceleration; the local

acceleration result of Zhang and Sra [38] can also be directly deduced from Theorem 3.12.

Riemannian Nesterov’s method with multiple gradient steps. We can also perform multiple gra-

dient descent (GD) steps from yk to obtain xk+1. Chen and Luo [16, Algorithm 3] present a method

10



of this type in the Euclidean setting. Here we consider a Riemannian version of their method:

yk = Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
,

x̃k+1 = Expyk
(−λ∇ f (yk)),

xk+1 = Expx̃k+1
(−λ∇ f (x̃k+1)),

zk+1 = Expyk

(
θkExp

−1
yk
(zk)− µ−1(1− θk)∇ f (yk)

)
.

(4.2)

Method (4.2) can be derived from Algorithm 2 by choosing xk+1 as the result of two GD steps; the

other variables the same as Riemannian Nesterov’s method.

4.2 Accelerated methods with additional distortion

Riemannian accelerated extra-gradient descent (RAXGD). We consider a Riemannian version of

the accelerated extra-gradient method (AXGD) proposed by Diakonikolas and Orecchia [20]:

yk = Expxk

( θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)
,

xk+1 = Expyk
(−λ∇ f (yk)),

zk+1 = Expxk+1

(
θkExp

−1
xk+1

(zk)− µ−1(1− θk)∇ f (xk+1)
)
.

(4.3)

Method (4.3) can be recovered from Algorithm 2 by choosing v = ∇ f (xk+1), and wk+1 = xk+1 =

Expyk
(−λk∇ f (yk)). While Diakonikolas and Orecchia [20] obtain AXGD via a specifically chosen

discretization of suitable continuous-time dynamics, we observe that (R)AXGD can be deduced from

A-HPE quite straightforwardly.

Generalized RAXGD. We can deduce from Algorithm 2 a generalized version of RAXGD. Specifi-

cally, we replace the gradient descent step of xk+1 in (4.3) with the following:

wk+1 = Expyk
(−λk∇ f (yk)), d(xk+1, wk+1) ≤ c · d(xk+1, yk). (4.4)

Here c ∈ (0, 1) is a numerical constant. Please refer to Appendix D for more details and discussion

of the choices proposed in (4.4).

The extra-point framework of Huang and Zhang [24]. Recently, a general framework was proposed

by Huang and Zhang [24] for obtaining accelerated methods in the Euclidean setting (cf. eq., (26)

therein). We observe that their framework has a natural interpretation via the PPM viewpoint

discussed in Section 2, though upon using a less general version of update rules compared with

A-HPE. A detailed comparison between their framework and A-HPE is provided in Appendix D.3,

where we also present a Riemannian generalization of their algorithm. Using our approach of

analyzing Riemannian A-HPE, local acceleration can be shown for the resulting algorithm, while for

a special case (corresponding to the algorithm described in [24, eq.(38)]), global eventual acceleration

can also be achieved.

5 Conclusion and future directions

In this paper, we propose an alternative viewpoint of the Euclidean A-HPE framework of [29] via

the proximal point method. This viewpoint allows us to derive a simple and novel convergence

analysis of A-HPE; it also plays a pivotal role in obtaining Algorithm 2, our proposed generaliza-

tion of A-HPE to the Riemannian setting. While most of our Euclidean proof generalizes to the
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Riemannian setting, there is an additional distortion caused by the non-linearity of the exponential

map that we must overcome; we model this distortion by leveraging geometric tools to complete the

convergence analysis. Our main results include local acceleration of Riemannian A-HPE in its most

general form, which we sharpen to global (eventual) acceleration whenever additional distortion

is not present. We demonstrate the generality of our framework by discussing several accelerated

first-order methods as special cases, recovering the recent results [4, 38] as special cases, obtaining

Riemannian counterparts of other accelerated (Euclidean) algorithms, and deriving new algorithms

from our framework.

An aspect more basic worth noting is that this work also contributes toward a more thorough

understanding of accelerated methods on Riemannian manifolds. Even on Euclidean spaces, our

PPM-based approach may be of independent interest, since it provides a unified way for analyzing

several accelerated methods that have been proposed in the literature and analyzed using a number

of different techniques. Nonetheless, there are some important questions that remain unanswered.

First, we only show local convergence in the general case where additional distortion arises. It

is unclear whether Riemannian A-HPE can indeed fail to converge in some cases, or whether the

locality restriction is a shortcoming of our analysis. Nevertheless, we believe that some regulariza-

tion conditions on the specification of the iprox operator (e.g., the conditions in Theorem C.16) are

necessary, since large distortion error would unavoidably impact the rate of convergence.

Second, in this paper we focus on accelerated first-order methods for strongly-convex functions

on non-positively curved manifolds. The main challenge of the convex setting is that the effect of

metric distortion would not asymptotically vanish as in the strong-convex setting. For manifolds

with positive curvature, it is necessary to restrict the iterates inside a convex set, for example by

using projection operators, but this may hurt the analysis of acceleration. Also, as discussed in

Section 1, the A-HPE framework can also lead to optimal higher-order methods in Euclidean setting.

However, to the best of our knowledge, optimal higher-order methods and their convergence rates

are not known in the Riemannian setting. It may be useful (and feasible) to design such methods

based on the Riemannian A-HPE framework introduced in this paper.

Finally, a broader goal in the study of acceleration is to develop theory and algorithms for non-

Euclidean settings beyond those offered by Riemannian geometry.
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A Connection between iprox and ε-subgradient

In this section, we show the equivalence between the iprox operator (cf. Definition 2.1) and the

notion of ε-subdifferential [12, Section 3].

Definition A.1. Suppose that h : R
d → R is µ-strongly convex and x ∈ R

d. We say that u ∈ R
d is

an ε-subgradient of f at x if the inequality

f (y) ≥ f (x) + 〈u, y− x〉+ µ

2
‖y− x‖2 − ε

holds for all y ∈ R
d.

Note that the condition v− µx + µw ∈ ∂ f (w) in Definition 2.1 implies that 0 ∈ ∂Φ(w), where

Φ(z) = f (x)− f (z)− 〈x− z, v〉+ µ

2
‖x− z‖2

Moreover, Φ(z) is concave since f is µ-strongly convex. Hence w ∈ arg maxz Φ(z), and for any z we

have

f (z) ≥ f (x) + 〈z− x, v〉+ µ

2
‖x− z‖2 − 1 + λµ

λ
ε.

In other words, v is an
1+λµ

λ ε-subgradient of f at x. The inequality (2.1) further implies that x +λv ≈
y. Thus Definition 2.1 indeed defines an approximation to the exact proximal point, for which

x + λv = y and v ∈ ∂ f (x).

B Details and proofs of Section 2

We define the potential function

pk = Ak( f (xk)− f (x∗)) +
1 + µAk

2
‖zk − x∗‖2 (B.1)

our goal is to show that the sequence {pk} is non-increasing, so that we can obtain a bound for

f (xk)− f (x∗).
In the work [9] the authors also use a potential function approach to show convergence of A-

HPE. Motivated by our linear coupling viewpoint, we present our analysis in a clearer way, which

is helpful for addressing the key challenges that may arise in the Riemannian setting.

We first present a simple lemma which will be used to simplify our analysis. It can be checked

using simple algebraic calculations, so we omit its proof here.

Lemma B.1 (Interpolation implies contraction). For all p, q ∈ R such that p + q > 0, we have

p‖x‖2 + q‖y‖2 = (p + q)

∥∥∥∥
p

p + q
x +

q

p + q
y

∥∥∥∥
2

+
pq

p + q
‖x− y‖2

We define ∇k+1 := vk+1 + µ (wk+1− xk+1) ∈ ∂ f (wk+1), so the last line of Algorithm 1 can be

re-written as

zk+1 ←
1 + µAk

1 + µAk+1
zk +

µak+1

1 + µAk+1
wk+1−

ak+1

1 + µAk+1
∇k+1. (B.2)

The following lemma deals with the squared-distance terms in the potential function.
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Lemma B.2. We have

1 + µAk

2
‖zk − x∗‖2 − 1 + µAk+1

2
‖zk+1 − x∗‖2 ≥ ak+1( f (wk+1)− f (x∗))

+
µak+1(1 + µAk)

2(1 + µAk+1)
‖zk − wk+1 + µ−1∇k+1‖2 − ak+1

2µ
‖∇k+1‖2

(B.3)

Proof: First note that

1 + µAk+1

2
‖zk+1 − x∗‖2 − 1 + µAk

2
‖zk − x∗‖2

=
µak+1

2

∥∥∥∥
1 + µAk+1

µak+1
(zk+1 − x∗)− 1 + µAk

µak+1
(zk − x∗)

∥∥∥∥
2

(B.4a)

− (1 + µAk)(1 + µAk+1)

2µak+1
‖zk+1 − zk‖2

=
µak+1

2
‖x∗ − wk+1 + µ−1∇k+1‖2 − µak+1(1 + µAk)

2(1 + µAk+1)
‖zk − xk+1 + µ−1vk+1‖2 (B.4b)

where Lemma B.1 is used in (B.4a), and (B.4b) follows from (B.2). Thus, by strong convexity of f

and the definition of wk+1 (see Definition 2.1) we have

f (x∗) ≥ f (wk+1) + 〈∇k+1, x∗ −wk+1〉+
µ

2
‖x∗ − wk+1‖2

= f (wk+1) +
µ

2
‖x∗ − wk+1 + µ−1∇k+1‖2 − 1

2µ
‖∇k+1‖2

so that

ak+1( f (x∗)− f (wk+1)) ≥
1 + µAk+1

2
‖zk+1 − x∗‖2 − 1 + µAk

2
‖zk − x∗‖2

+
µak+1(1 + µAk)

2(1 + µAk+1)
‖zk −wk+1 + µ−1∇k+1‖2 − ak+1

2µ
‖∇k+1‖2

as desired. �

Remark B.3. The derivation of (B.4) reveals the connection between the choice of parameters in the

update (B.2) and the growth of coefficient of the distance term in the construction of potential

function. This observation will provide guidelines for choosing parameters in the Riemannian

setting (cf. Lemma 3.5).

Now it suffices to deal with the function value terms. Strong convexity implies that

f (xk) ≥ f (wk+1) +
µ

2
‖xk − wk+1 + µ−1∇k+1‖2 − 1

2µ
‖∇k+1‖2 (B.5)

and

f (xk+1) ≥ f (wk+1) +
µ

2
‖µ−1vk+1‖2 − 1

2µ
‖∇k+1‖2 (B.6)

while the definition of wk+1 implies

σ2
k

2
‖xk+1 − yk‖2 ≥ 1

2
‖xk+1 − yk + λkvk+1‖2

+ λk (1 + λkµ)

(
f (xk+1)− f (wk+1) +

1

2µ

(
‖∇k+1‖2 − ‖vk+1‖2

)) (B.7)
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We now seek a correct linear combination of the above inequalities to match the coefficient of

pk − pk+1. Note that adding (B.6) and (B.7) leads to the following simpler inequality

‖xk+1 − yk + λkvk+1‖2 ≤ σ2
k ‖xk+1 − yk‖2 (B.8)

The following lemma proves non-increasing of the potential function, which is based on the

above observations and results.

Lemma B.4. We have for all k ≥ 0 that

pk − pk+1 ≥
µλk Ak(1 + µAk)

2ak+1
‖xk − zk‖2 +

(1− σ2
k )Ak+1

2λk
‖xk+1 − yk‖2

Proof: By combining the inequalities (B.3),(B.5),(B.7) we have

pk − pk+1

=

(
1 + µAk

2
‖zk − x∗‖2 − 1 + Ak+1

2
‖zk+1 − x∗‖2 + ak+1 ( f (x∗)− f (wk+1))

)

︸ ︷︷ ︸
use Lemma B.2

+ Ak( f (xk)− f (wk+1))︸ ︷︷ ︸
use (B.5)

+ Ak+1( f (wk+1)− f (xk+1))︸ ︷︷ ︸
use (B.7)

≥ µak+1(1 + µAk)

2(1 + µAk+1)
‖zk − xk+1 + µ−1vk+1‖2 +

µAk

2
‖xk − xk+1 + µ−1vk+1‖2

− Ak+1

2µ
‖∇k+1‖2 +

Ak+1

2µ

(
‖∇k+1‖2 − ‖vk+1‖2

)

+
Ak+1

λk(1 + λkµ)

(
1

2
‖xk+1 − yk + λkvk+1‖2 − σ2

k

2
‖xk+1 − yk‖2

)

(B.9)

We now show that the last expression in the above inequality is positive. Recall that in Sec-

tion 2.1 we made the intuitive argument which shows that the “positive term" of form θz‖zk −
xk+1 + µ−1vk+1‖2 + θx‖xk − xk+1 + µ−1vk+1‖2 cannot be small. Formally, the choice of yk implies

that
µak+1(1 + µAk)

2(1 + µAk+1)
‖zk − xk+1 + µ−1vk+1‖2 +

µAk

2
‖xk − xk+1 + µ−1vk+1‖2

≥ µ (Ak+1 + µ(ak+1 Ak + Ak Ak+1))

2(1 + µAk+1)
‖yk − xk+1 + µ−1vk+1‖2

+
µAkak+1(1 + µAk)

2 (Ak+1 + µ(ak+1 Ak + Ak Ak+1))
‖xk − zk‖2

=
µa2

k+1

2λk(1 + µAk+1)
‖yk − xk+1 + µ−1vk+1‖2 +

µλk Ak(1 + µAk)

2ak+1
‖xk − zk‖2

where we have used the following equation

a2
k+1 = λk (Ak+1 + µ(ak+1 Ak + Ak Ak+1)) (B.10)

to simplify the expression. We can now deduce from (B.8) that the right hand side of (B.9) is lower

bounded by

µa2
k+1

2λk(1 + µAk+1)
‖yk − xk+1 + µ−1vk+1‖2 +

µλk Ak(1 + µAk)

2ak+1
‖xk − zk‖2

− Ak+1

2µ
‖vk+1‖2 +

Ak+1

λk

(
1
2‖xk+1 − yk + λkvk+1‖2 − σ2

k
2 ‖xk+1 − yk‖2

)
.
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Now except from the ‖xk − zk‖2 term which is non-negative, the rest can be written as

α‖xk+1 − yk‖2 + 2β 〈xk+1 − yk, vk+1〉+ γ‖vk+1‖2 (B.11)

where

α =
µa2

k+1

2λk(1 + µAk+1)
+

1− σ2
k

2

Ak+1

λk

β =
a2

k+1

2λk(1 + µAk+1)
− 1

2
Ak+1 = −

µa2
k+1

2(1 + µAk+1)

γ =
a2

k+1

2µλk(1 + µAk+1)
− Ak+1

2µ
+

1

2
λk Ak+1

=
1

2
λk Ak+1−

a2
k+1

2(1 + µAk+1)
=

µλka2
k+1

2(1 + µAk+1)

where we have used (B.10) to simplify the expressions. Now it’s easy to see that the desired inequal-

ity holds. �

We now make some remarks on the previous lemma.

1. Firstly, we can see from the proof that the choice of ak+1 guarantees that the quadratic function

(B.11) is non-negative. The correct way of obtaining ak+1 is to first deduce the quadratic

function and then determine a proper choice of ak+1 such that the function is always non-

negative. This approach will be used to derive the update rule of ak+1 in the Riemannian

setting, where additional parameters need to be introduced due to the distortion phenomenon.

2. Secondly, as we have discussed before, xk and zk can both be regarded as an approximate

proximal point iterate, and the point yk is chosen on the segment between xk and zk in order

to combine these two approaches. The ratio ‖xk − yk‖ : ‖yk − zk‖ follows naturally from the

analysis and Lemma B.1, which suggests the correct way of doing this combination.

Theorem 2.2 is now a direct corollary of Lemma B.4.

Theorem B.5. (Theorem 2.2 restated) For the iterates produced by Algorithm 1, we have

f (xk)− f (x∗) ≤ 1

Ak

(
A0( f (x0)− f (x∗)) +

1 + µA0

2
‖x0 − x∗‖2

)

= O
(

Π
k
i=1

(
1 + max

{
µλi,

√
µλi

})−1
)

Proof: Since p0 ≥ pk ≥ Ak( f (xk)− f (x∗)), we have

f (xk)− f (x∗) ≤ 1

Ak
p0 =

1

Ak

(
A0( f (x0)− f (x∗)) +

1 + µA0

2
‖x0 − x∗‖2

)
.

Note that

ak+1 = Ak+1− Ak =
(1 + 2µAk) λk+1 +

√
(1 + 2µAk)

2 λ2
k+1 + 4 (1 + µAk) Akλk+1

2

≥ Ak max
{

µλk+1,
√

µλk+1

}
,

so that the conclusion follows. �
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C Details of Section 3

C.1 Some useful properties of Algorithm 2

The following lemma characterize the growth rate of sequence {Ak}, which is closely related to the

convergence rate of Algorithm 2.

Lemma C.1. For all k ≥ 0, we have Ak+1 = (1 + µλk)(θkak+1 + Ak).

Proof: Since

(1− θk)Bk = (1− θk)θkδkBk+1 =
µ

2
θkδkak+1,

the equation Bk(1− θk)
2 = µλkθk

(
(1− θk)Bk +

µ
2 δk Ak

)
can be equivalently written as

(1− θk)
µ

2
θkδkak+1 = µλkθk ·

µ

2
δk(Ak + θkak+1)

⇔ (1− θk)ak+1 = µλk(Ak + θkak+1)

⇔ Ak+1 = Ak + ak+1 = (1 + µλk)(Ak + θkak+1).

The conclusion follows. �

The next lemma reveals the relationship between the ratio of coefficients Ak and Bk and an

important quantity ξk = ak
Ak

(defined in the proof of Theorem 3.7). Recall that in the Euclidean

setting, we have the equation Bk = 1+µAk

2 , but the situation is more complex in the Riemannian

setting due to the distortion rate δk.

Lemma C.2. For any k ≥ 0, we have

Bk+1

Ak+1
=

1 + µλk

2λk

(
ak+1

Ak+1

)2

=
1 + µλk

2λk
ξ2

k+1.

Proof: Recall that we have Ak+1 = (1 + µλk)(θkak+1 + Ak) = (1 + µλk)(Ak+1 − (1− θk)ak+1), so

that

1− θk =
µλk Ak+1

(1 + µλk)ak+1
.

We can then obtain
Bk+1

Ak+1
=

µ

2

ak+1

(1− θk)Ak+1
=

1 + µλk

2λk

(
ak+1

Ak+1

)2

,

as desired. �

C.2 Potential function analysis

Lemma C.3 (restatement of Lemma 3.5). Suppose that δk > 0 is a valid distortion rate and Bk+1 = Bk
θkδk

,

then

Bkd2
wk
(zk, x∗)− Bk+1d2

wk+1
(zk+1, x∗) ≥ (1− θk)Bk+1

(
2

µ
( f (wk+1)− f (x∗))− 1

µ2
‖∇k+1‖2

)

+ θk(1− θk)Bk+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2
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Proof: Since δk is a valid distortion rate, we have

Bkd2
wk
(zk, x∗) ≥ Bk

δk
d2

wk+1
(zk, x∗) (C.1)

This implies that

Bk+1d2
wk+1

(zk+1, x∗)− Bkd2
wk
(zk, x∗) ≤ Bk+1d2

wk+1
(zk+1, x∗)− θkBk+1d2

wk+1
(zk, x∗) (C.2a)

= (1− θk)Bk+1

(
1

1− θk
dwk+1

(zk+1, x∗)− θk

1− θk
dwk+1

(zk, x∗)
)2

(C.2b)

− θk

1− θk

(
dwk+1

(zk+1, x∗)− dwk+1
(zk, x∗)

)2

= (1− θk)Bk+1

∥∥∥Exp−1
wk+1

(x∗)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

(C.2c)

− θk(1− θk)Bk+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

where (C.2a) follows from (C.1) and θkBk+1 = Bk
δk

, (C.2b) uses Lemma B.1, and (C.2c) follows from

the definition of zk+1. On the other hand, by strong convexity of f , we have

f (x∗)− f (wk+1) ≥
〈
Exp−1

wk+1
(x∗),∇k+1

〉
+

µ

2
‖Exp−1

wk+1
‖2

=
µ

2
‖Exp−1

wk+1
(x∗) + µ−1∇k+1‖2 − 1

2µ
‖∇k+1‖2

=
µ

2

∥∥∥Exp−1
wk+1

(x∗)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2
− 1

2µ
‖∇k+1‖2

The conclusion follows by plugging this inequality into (C.2). Note that the steps after (C.2a) are

essentially the same as the Euclidean setting, because all the calculations are done in the tangent

space Twk+1
M. �

We then proceed to derive a Riemannian analog of Lemma B.4, where we proved the potential

decrease in the Euclidean setting. By following the same approach as Lemma B.4, we can see that

the inequality would involve an additional point y′k.

Lemma C.4 (restatement of Lemma 3.6). Suppose that ak+1 = Ak+1 − Ak =
2
µ (1− θk)Bk+1, then

pk − pk+1 ≥
µ

2
(θkak+1 + Ak)

∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
Ak+1

2λkσk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥
2

+
µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk)−

σk Ak+1

2λk
d2

wk+1
(xk+1, yk)−

Ak+1

2µ
‖vk+1‖2

(C.3)

where

y′k = Expwk+1

(
Ak

Ak + θkak+1
Exp−1

wk+1
(xk) +

θkak+1

Ak + θkak+1
Exp−1

wk+1
(zk)

)
(C.4)

Proof: Recall the the argument in Lemma B.4 basically uses strong convexity and the definition of

Euclidean iprox to lower bound the potential decrease with a quadratic function, and the choice of

parameters ensure that the quadratic is positive definite. In the Riemannian setting, since ‘vector’ on

a manifold is undefined, we need to work with vectors in a tangent space instead. In the following,
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we work in the tangent space Twk+1
. This choice is quite natural, since straightforwardly generalizing

of the proof of Lemma B.4 would involve exponential maps at wk+1. In Twk+1
, our goal is to derive a

quadratic function to lower bound pk − pk+1.

Strong convexity implies that

f (xk) ≥ f (wk+1) +
µ

2
‖Exp−1

wk+1
(xk) + µ−1∇k+1‖2 − 1

2µ
‖∇k+1‖2

and

f (xk+1) ≥ f (wk+1) +
µ

2
‖µ−1vk+1‖2 − 1

2µ
‖∇k+1‖2,

and the definition of Riemannian iprox operator (3.2) implies that

σ2
k

2
‖Exp−1

wk+1
(xk+1)− Exp−1

wk+1
(yk)‖2 ≥ 1

2
‖Exp−1

wk+1
(xk+1)− Exp−1

wk+1
(yk) + λkvk+1‖2

+ λk(1 + λkµ)

(
f (xk+1)− f (wk+1) +

1

2µ

(
‖∇k+1‖2 − ‖vk+1‖2

))

Combining the above inequalities, we have

pk − pk+1 =

(
Bkd2

wk
(zk, x∗)− Bk+1d2

wk+1
(zk+1, x∗) +

2

µ
(1− θk)Bk+1( f (x∗)− f (wk+1))

)
(C.5a)

+ Ak( f (xk)− f (wk+1)) + Ak+1( f (wk+1)− f (xk+1))

≥ µAk

2

∥∥∥Exp−1
wk+1

(xk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
µ

2
θkak+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
Ak+1

2λkσk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥
2

− σk Ak+1

2λk
d2

wk+1
(xk+1, yk)−

Ak+1

2µ
‖vk+1‖2

where we use the condition ak+1 = 2
µ (1− θk)Bk+1 in (C.5a). Finally, Lemma B.1 implies that

µAk

2

∥∥∥Exp−1
wk+1

(xk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
µ

2
θkak+1

∥∥∥Exp−1
wk+1

(zk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

=
µ

2
(θkak+1 + Ak)

∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk).

The conclusion follows. The final equation in the proof explains why y′k would appear in (C.3). �

C.3 Convergence without the additional distortion

In the Riemannian setting, it is not guaranteed that yk is the same as y′k, and this may give rise to

the additional distortion, as shown in Lemma 3.6. However, recall that our definition of iprox allows

flexible choices of xk+1, wk+1 and vk+1. We can see that in some special cases, we still have yk = y′k.

The following proposition provides sufficient condition for this to hold. It can be easily derived

from the definition of yk and y′k.
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Proposition C.5. Suppose that wk+1 lies on the geodesic connecting xk and zk, then yk = y′k.

We now move on to theoretical analysis under the condition yk = y′k. The right hand side of

(3.4) is a quadratic function of Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) and vk+1, after ignoring the non-negative

dwk+1
(xk, zk) term. We can then prove the following lemma for potential decrease. The equation

Ak+1 = (1 + µλk)(θkak+1 + Ak) plays a crucial role in the proof.

Lemma C.6. Suppose that σk < 1, then

(1− σk)Ak+1

2λk
d2

wk+1
(xk+1, yk) ≤

µ

2
(θkak+1 + Ak)

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
Ak+1

2λk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥
2

− σk Ak+1

2λk
d2

wk+1
(xk+1, yk)−

Ak+1

2µ
‖vk+1‖2

Proof: First note that the difference of the right hand side and left hand side of the inequality can

be written in the following form (where we omit the d2
wk+1

(xk, zk) term, which is non-negative):

RHS− LHS = αd2
wk+1

(xk+1, yk) + 2β
〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
+ γ‖vk+1‖2

where

α =
µ

2
(θkak+1 + Ak) +

(1− σk)Ak+1

2λk
=

Ak+1

2

(
µ

1 + µλk
+

1− σk

λk

)

β =
1

2
(θkak+1 + Ak)−

Ak+1

2
= −Ak+1

2
· µλk

1 + µλk

γ =
1

2µ
(θkak+1 + Ak) +

λk Ak+1

2
− Ak+1

2µ
=

Ak+1

2
· µλ2

k

1 + µλk
.

Note that

β2 =

(
α− (1− σk)Ak+1

2λk

)
γ,

we can thus obtain

RHS− LHS ≥ (1− σk)Ak+1

2λk
d2

wk+1
(xk+1, yk)

as desired. �

Combining Lemma 3.5 and Lemma C.6, we can see that the potential sequence {pk} is non-

increasing:

Corollary C.7. Suppose that yk = y′k, then the following inequality holds:

pk − pk+1 ≥
(1− σk)Ak+1

2λk
d2

wk+1
(xk+1, yk) +

µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk).

In particular, we have pk+1 ≤ pk, so that pk ≤ p0 for all k ≥ 1.

Finally, we can prove the following theorem, which says that if wk+1 is chosen on the geodesic

connecting xk and zk, then Algorithm 2 provably achieves eventual acceleration with arbitrary ini-

tialization.
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Theorem C.8 (restatement of Theorem 3.7). Suppose that in Algorithm 2, we choose λk = λ and wk+1

lies on the geodesic connecting xk and zk s.t. d(wk+1, yk) = O(1), then we have

f (xk)− f (x∗) ≤ p0

Ak
, d2

wk+1
(zk, x∗) ≤ p0

Bk
≤ 2p0

µak
. (C.6)

Moreover, we have

lim
k→+∞

Ak+1

Ak
= 1 + µλ +

√
µλ(1 + µλ)

Proof: The first two inequalities follow from Corollary C.7 and

ak+1 = (1− θk)
Bk

δkθk
= 2µ−1(1− θk)Bk+1 < 2µ−1Bk+1, ∀k ≥ 0. (C.7)

We now prove (C.7). This is equivalent to

lim
k→+∞

ak

Ak
=

√
µλ

1 + µλ
.

Define ξk =
ak
Ak

for k ≥ 1. Note that the update of θk and ak+1 in Algorithm 2 implies that

δka2
k+1 − 2λ

(µ

2
δk Ak + Bk

)
ak+1 − 2λAkBk = 0

Thus

δka2
k+1 = 2λ

(
Bk Ak+1 +

µ

2
δk Akak+1

)

(1 + µλ)a2
k+1 = 2δ−1

k λAk+1

(
Bk +

µ

2
δkak+1

)
= 2λAk+1Bk+1

(C.8)

As a result, we have Bk
Ak

= 1+µλ
2λ ξ2

k . The above derivations only holds for k ≥ 1, we artificially define

ξ0 =
√

2λ
1+µλ

Bk
Ak

, so that for all k ≥ 0, rewrite the equation Bk+1 =
Bk
δk
+ µ

2 ak+1 in terms of ξ as

δk
1 + µλ

2λ
ξ2

k+1 =
1 + µλ

2λ
ξ2

k(1− ξk+1) +
µ

2
δk+1ξk+1

or equivalently,

δkξ2
k+1 = ξ2

k(1− ξk+1) +
µλ

1 + µλ
δkξk+1 (C.9)

Before proceeding to analyze the recursive equation (C.9), we first prove that limk→+∞ δk = 1. This

is in fact necessary since otherwise {ξk} would not converge to the fixed point
√

µλ
1+µλ .

Since limk→+∞ Ak = +∞, we have xk → x∗ and dwk+1
(xk+1, yk) → 0, by Corollary C.7. By

assumption, d(wk+1, yk) is bounded, so that

d(xk+1, yk) ≤ dwk+1
(xk+1, yk) + 2d(wk+1, yk)

is bounded, which implies that the sequence {yk} is bounded. Thus {wk} is also bounded.

Since Ak+1 ≥ (1 + 2µλ)Ak, we have ak+1 = Ak+1 − Ak ≥ 2µλAk, so that limk→+∞ ak = +∞

and d2
wk+1

(zk, x∗) ≤ p0

ak
→ 0. Since wk+1 = O(1), the distortion inequality Lemma 3.4 implies that

d(zk, x∗) → 0. Note that wk+1 lies on the geodesic connecting xk and zk, and M has non-positive

curvature, we have

d(wk+1, x∗) ≤ max{d(xk , x∗), d(zk, x∗)} → 0.
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Hence δk = TK(d(wk, zk))→ 1 as k → +∞.

We now return to (C.9). We first show that for any ε > 0, we have

lim inf
k→+∞

ξk ≥ (1− ε)

√
µλ

1 + µλ

Since d(wk+1, yk) ≤ Dk → 0 by assumption, and yk → x∗, we have wk+1 → x∗. The definition of δk

then implies that limk→+∞ δk = 1.

The recursive relation (C.9) can be rewritten as

δkξk+1

(
ξk+1 −

µλ

1 + µλ

)
= ξ2

k(1− ξk+1)

Note that: if δk becomes larger and ξk becomes smaller, then ξk+1 also becomes smaller. Based on

this observation, we first choose k0 such that δk ≤ 1 + ε
√

µλ
1+µλ for all k ≥ k0, and then construct a

reference sequence {ζk}k≥k0
defined as

ζk0
= ξk0

, δζk+1

(
ζk+1 −

µλ

1 + µλ

)
= ζ2

k(1− ζk+1), δ = 1 + ε

√
µλ

1 + µλ

Then we have ξk ≥ ζk for all k ≥ k0. Alternatively, we can write the recursion above as ζk+1 = ϕ(ζk),

where

ϕ(x) =
1

2δ


 µλ

1 + µλ
δ− x2 +

√(
x2 − µλ

1 + µλ
δ

)2

+ 4δx2


 (C.10)

We have

ϕ′(x) = − x

δ
+

x
(

x2 − µλ
1+µλ δ

)
+ 2δx

δ

√(
x2 − µλ

1+µλ δ
)2

+ 4δx2

The observation made above implies that ϕ′(x) ≥ 0. On the other hand,

ϕ′(x) < 1⇔
(

x

(
x2 − µλ

1 + µλ
δ

)
+ 2δx

)2

< (x + δ)2

((
x2 − µλ

1 + µλ
δ

)2

+ 4δx2

)

⇐ 4δx2

(
x2 − µλ

1 + µλ
δ

)2

+ 4δ2x2
< (x + δ)2 · 4δx2

(C.11)

which trivially holds, since δ > 1. Since ϕ is continuously differentiable, we have supx∈[0,1] ϕ′(x) < 1

i.e. ϕ is a contraction mapping. Since ζk ∈ [0, 1], ∀k ≥ k0, it converges exponentially fast to a fixed

point of ϕ, which is the positive root of the equation x2 + (δ− 1)x− µλ
1+µλ δ = 0. It’s easy to check

that this root is larger than (1− ε)
√

µλ
1+µλ , so that

lim inf
k→+∞

ξk ≥ lim inf
k→+∞

ζk ≥ (1− ε)

√
µλ

1 + µλ

To prove the desired result, it remains show that

lim sup
k→+∞

ξk ≤
√

µλ

1 + µλ
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This can be similarly shown by constructing a reference sequence with δ = 1 in the recursion, and

the reference sequence converges to the fixed point corresponding to δ = 1, which is
√

µλ
1+µλ . �

Although Theorem 3.7 shows that Algorithm 2 eventually achieves acceleration in the sense of

Definition 1.1, it might also be helpful to know how fast the sequence {τk} (cf. Definition 1.1)

achieves the order of O
(√

µ
L

)
i.e. how long the ‘burn-in’ period takes to achieve full acceleration.

Since at this point we are focusing on acceleration for smooth strongly-convex functions, in the

following we always assume that f is L-smooth.

Lemma C.9. Suppose that d(wk+1, yk) = O(1), and λk = λ = c
L , where c ∈ (0, 1) is a numerical constant,

then

δk − 1 ≤ C0

(
1 + c

µ

L

)−k

where C0 is a constant that may depend on L, µ and initialization, but independent of k.

Proof: Let D be a uniform upper bound of d(wk+1, yk). Since ak ≥ c
µ
L Ak ≥ c

µ
L

(
1 + c

µ
L

)k
A0, we

have

d2
wk+1

(zk, x∗) ≤ 2L

µ2 A0

(
1 + c

µ

L

)−k
p0

Recall that in the proof of Theorem 3.7 we have shown that {wk} is bounded, and it’s easy to see

that the upper bound only depends on initialization and d(wk+1, yk), by Lemma 3.4 we have

d2(zk, x∗) ≤ 2C1L

cµ2 A0

(
1 + c

µ

L

)−k
p0

for some C1 ≥ 1 that only depends on initialization and D. Since wk+1 lies on the geodesic between

xk and zk, we have

d2(wk+1, x∗) ≤ max
{

d2(xk, x∗), d2(zk, x∗)
}

≤ max
{

2µ−1( f (xk)− f (x∗)), d2(zk, x∗)
}
≤ 2C1L

cµ2A0

(
1 + c

µ

L

)−k
p0

As a result,

d2(wk, zk) ≤ 2
(
d2(wk, x∗) + d2(zk, x∗)

)
≤ 12C1L

cµ2 A0

(
1 + c

µ

L

)−(k−1)
p0 (C.12)

Finally since TK(r) = 1 +O(r2) for small r, we have

δk − 1 = O
((

1 + c
µ

L

)−k
)

,

as desired. �

Theorem C.10 (restatement of Theorem 3.9). Suppose that d(wk+1, yk) = O(1) and λk = λ = O
(

1
L

)
,

then we have ξk ≥ 1
2

√
µλ

1+µλ after T = Õ
(

L
µ

)
iterations, where Õ hides logarithmic terms which may depend

on L, µ and the initialization. As a result, Algorithm 2 achieves acceleration in at most Õ
(

L
µ

)
iterations.
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Proof: We consider the recursive equation of ξk derived in the proof of Theorem 3.7:

δkξk+1

(
ξk+1 −

µλ

1 + µλ

)
= ξ2

k(1− ξk+1) (C.13)

The previous lemma implies that

δk ≤ 1 +

√
µλ

1 + µλ
(C.14)

holds after Õ
(

L
µ

)
iterations, where Õ hides logarithmic terms. In the following, we study how

many iterations are needed for ξk ≥ 1
2

√
µλ

1+µλ after (C.14) is guaranteed to hold.

Indeed, note that smaller δk and larger ξk implies a larger ξk+1 in (C.13), it suffices to consider

the case δk = δ = 1 +
√

µλ
1+µλ .

Now we study the behavior of ϕ(x) defined in (C.10) more carefully. Its derivative ϕ′(x) can be

written as

ϕ′(x) =

2+µλ
1+µλ δx

(
x2 + 2+µλ

1+µλ δ
)√

x4 + 4+2µλ
1+µλ δx2 +

(
x4 + 4+2µλ

1+µλ δx2
)

Hence for all δ, x > 0 we have ϕ′(x) ≤ 1√
2
. This implies that with a constant δ, (C.10) converges to

its fixed point in Õ(1) iterations. Since for δ = 1+
√

µλ
1+µλ , its fixed point is larger than 1+ 1

2

√
µλ

1+µλ ,

we conclude that a total number of Õ
(

L
µ

)
iterations are needed for ξk ≥ 1

2

√
µλ

1+µλ to hold. �

C.4 The general case

This subsection provides details and proofs of our main results for the general case, where the

additional distortion is present. We begin with the following result, which shows that we need to

control the distance between yk and y′k.

Lemma C.11. Suppose that σk < 1, then

pk − pk+1 ≥
(1− σk)Ak+1

4λk
d2

wk+1
(xk+1, yk) +

µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk)

+
(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)‖vk+1‖

− µ(θkak+1 + Ak)dwk+1
(yk, y′k) ·

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥

(C.15)

Proof: Note that
∥∥∥Exp−1

wk+1
(y′k)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
2

≥
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
2

+ 2
〈
Exp−1

wk+1
(y′k)− Exp−1

wk+1
(yk), Exp

−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

〉

≥
∥∥∥Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1) + µ−1vk+1

∥∥∥
2

− 2dwk+1
(yk, y′k) ·

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
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where the last line follows from Cauchy-Schwarz inequality. The remaining steps of the proof is sim-

ilar to Lemma C.6, except that we also need to incorporate the
〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉

into the bound. Indeed we have

αd2
wk+1

(xk+1, yk) + 2β
〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
+ γ‖vk+1‖2

≥ (1− σk)Ak+1

4λk
d2

wk+1
(xk+1, yk) + Ak+1



√

µ2λ2
k

(1 + µλk)2
+

(1− σk)µλk

2(1 + µλk)
− µλk

1 + µλk


 ·

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)
∥∥∥ ‖vk+1‖

≥ (1− σk)Ak+1

4λk
d2

wk+1
(xk+1, yk) +

(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)‖vk+1‖

where α, β and γ are the coefficients defined in Lemma C.6. Hence, by Lemma C.4 we have

pk − pk+1 ≥
µ

2
(θkak+1 + Ak)

∥∥∥Exp−1
wk+1

(y′k)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥
2

+
Ak+1

2λkσk

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1)− λkvk+1

∥∥∥
2

+
µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk)−

σk Ak+1

2λk
d2

wk+1
(xk+1, yk)−

Ak+1

2µ
‖vk+1‖2

≥ αd2
wk+1

(xk+1, yk) + 2β
〈
Exp−1

wk+1
(yk)− Exp−1

wk+1
(xk+1), vk+1

〉
+ γ‖vk+1‖2

+
µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk)

− µ(θkak+1 + Ak)dwk+1
(yk, y′k) ·

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥

≥ (1− σk)Ak+1

4λk
d2

wk+1
(xk+1, yk) +

µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk)

+
(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)‖vk+1‖

− µ(θkak+1 + Ak)dwk+1
(yk, y′k) ·

∥∥∥Exp−1
wk+1

(yk)− Exp−1
wk+1

(xk+1) + µ−1vk+1

∥∥∥

as desired. �

In order to ensure potential decrease, it suffices to control the magnitude of the error term

dwk+1
(yk, y′k), as shown in the corollary below:

Corollary C.12. Suppose that

dwk+1
(yk, y′k) ≤

1− σk

6
min

{√
µλk, 1

}
dwk+1

(xk+1, yk),

then we have the following inequality which implies potential decrease:

pk − pk+1 ≥
(1− σk)Ak+1

12λk
d2

wk+1
(xk+1, yk) +

µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk).
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Proof: Under the given condition, we can see that

(1− σk)Ak+1

6

√
µλk

1 + µλk
dwk+1

(xk+1, yk)

≥ 1− σk

6

√
µλk(1 + µλk)(θkak+1 + Ak) ·

6

1− σk

1√
µλk

dwk+1
(yk, y′k)

≥ (θkak+1 + Ak)dwk+1
(yk, y′k)

and

(1− σk)Ak+1

6λk
dwk+1

(xk+1, yk) ≥
1 + µλk

λk
(θkak+1 + Ak)dwk+1

(yk, y′k) ≥ µ(θkak+1 + Ak)dwk+1
(yk, y′k)

Plugging the above inequalities into (C.15), we obtain the desired result. �

Lemma C.13 (restatement of Lemma 3.10). Suppose that x ∈ M and y, a ∈ TxM. Let z = Expx(a),

then we have

d (Expx(y + a), Expz (Γ
z
xy)) ≤ min{‖a‖, ‖y‖}SK (‖a‖+ ‖y‖)

where

SK(r) = cosh
(√

Kr
)
−

sinh
(√

Kr
)

√
Kr

Proof: Define γ(t) = Expx(ta) and the curve

t→ c(r, t) = Expγ(t)

(
rΓ

γ(t)
x (y + (1− t)a)

)

for fixed r. Let Jnorm
t (r) = d

dt c(r, t), then it is shown in [34, Section B.3] that

d (Expx(y + a), Expz (Γ
z
xy)) ≤

∫ 1

0
‖Jnorm

t (1)‖dt

Moreover, for fixed t ∈ [0, 1], let z̃ = Γ
γ(t)
x (y + (1− t)a) and ρt = ‖y + (1− t)a‖ = ‖z̃‖, then its easy

to see that ‖z‖ ≤ ‖y‖+ ‖a‖, and the proof in [34, Section B.3] implies that

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖ SK(ρt) ≤
‖a‖ · ‖y‖

ρt
SK(ρt) ≤

‖a‖ · ‖y‖
‖a‖+ ‖y‖SK(‖a‖+ ‖y‖),

where the last step follows from the observation that r−1SK(r) is increasing in r, by Taylor’s expan-

sion. Hence the result follows. �

The following lemma gives an upper bound of dwk+1
(yk, y′k) in terms of function Sk and a distance

term.

Lemma C.14 (restatement of Lemma 3.11). We have for all k ≥ 1 that

dwk+1
(yk, y′k) ≤ 2d∗(wk+1; xk, zk) · SK (d(xk, zk) + d∗(wk+1; xk, zk))

where d∗(w; x, z) = min
{

d(w, y) : y = Expx(t · Exp−1
x (z), t ∈ [0, 1]

}
is the distance from w to the geodesic

connecting x and z.
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Proof: Let τ = θkak+1

Ak+θkak+1
, then by definition

y′k = Expwk+1

(
(1− τ)Exp−1

wk+1
(xk) + τExp−1

wk+1
(zk)

)

Suppose that w is a point on the geodesic connecting xk and zk, then

yk = Expw

(
(1− τ)Exp−1

w (xk) + τExp−1
w (zk)

)

We moreover define

y′′k = Expwk+1

(
(1− τ)Γ

wk+1
w Exp−1

w (xk) + τΓ
wk+1
w Exp−1

w (zk) + Exp−1
wk+1

(w)
)

Applying Lemma C.13 with x = w, z = wk+1 gives

d(yk, y′′k ) ≤ d(wk+1, w) · SK (d(xk, zk) + 2d(wk+1, w))

On the other hand,

dwk+1
(y′k, y′′k ) ≤ (1− τ)d

(
xk, Expwk+1

(
Γ

wk+1
w Exp−1

w (xk) + Exp−1
wk+1

(w)
))

+ τd
(

xk, Expwk+1

(
Γ

wk+1
w Exp−1

w (zk) + Exp−1
wk+1

(w)
))

≤ (1− τ)d(wk+1, w) · SK (d(w, xk) + 2d(w, wk+1))

+ τd(wk+1, w) · SK (d(w, zk) + 2d(w, wk+1))

≤ d(wk+1, w) · SK (d(xk, zk) + 2d(w, wk+1))

Combining the above inequalities, we obtain

dwk+1
(yk, y′k) ≤ 2d(wk+1, w) · SK (d(xk, zk) + 2d(w, wk+1))

The conclusion now follows from the definition of d∗. �

Corollary C.15. Suppose that

12d∗(wk+1; xk, zk) · SK (d(xk, zk) + 2d∗(wk+1; xk, zk)) ≤ (1− σk)min
{√

µλk, 1
}

dwk+1
(xk+1, yk),

(C.16)

then we have the following inequality which implies potential decrease:

pk − pk+1 ≥
(1− σk)Ak+1

12λk
d2

wk+1
(xk+1, yk) +

µθkak+1 Ak

2(Ak + θkak+1)
d2

wk+1
(xk, zk). (C.17)

The corollary can be seen as a generalized version of the potential-decrease result we obtained

in Corollary C.7. Indeed, when wk+1 lies on the geodesic between xk and zk, then the left hand side

of (C.17) equals zero, so that (C.17) is guaranteed to hold.

We are now ready to prove our main result.

Theorem C.16 (formal version of Theorem 3.12). Assume f is L-smooth, and suppose that

• σk = σ ∈ (0, 1).

• The sequence {wk} satisfies d2(wk, x∗) ≤ ω max
{

d(xi, x∗), 0 ≤ i ≤ k; d(zj, z∗), 0 ≤ j ≤ k− 1
}

.
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• d∗(wk+1; xk, zk) ≤ ρ1dwk+1
(xk+1, yk) and d∗(wk+1; xk, zk) ≤ ρ2 max {d(xk, x∗), d(zk, x∗)}.

• The step size λk = λ = c2

L where c ∈ (0, 1) is a fixed constant.

• The initialization satisfies d(x0, x∗) ≤ τ
20 K−

1
2

( µ
L

) 3
4 and B0 =

µ
2 A0 > 0, where

τ ≤ min

{√
c

2(2ω + 5)
,

√
25(1− σ)c

2ρ1(7 + 10ρ2
2)

}
.

then for all k ≥ 0, the following statements hold:

(1). Potential decrease (C.17) holds.

(2). d2(xk, x∗) ≤
(

L
µ + 1

)
d2(x0, x∗) ≤ τ2

200 K−1
( µ

L

) 1
2 .

(3). The distortion rate δk ≤ 1 + 2ω+5
10 τ2

√
µ
L .

(4). ξk := ak
Ak
≥ 9

10

√
µλ

1+µλ and hence Bk
Ak
≥ 2

5 µ.

(5). d2(zk, x∗) ≤ 1
80 K−1

( µ
L

) 1
2 .

Proof: We prove the result by induction on k. Specifically, for k ≥ 0, we first prove (2),(3) and (5)

hold for k, and then use them to derive (1),(4) for k + 1, completing one round of induction step.

When k = 0, (2) follows from

δ0 ≤ 1 + 4Kd2(w0, z0) ≤ 1 + 8K
(
d2(w0, x∗) + d2(z0, x∗)

)
≤ 1 +

ω + 1

50
τ2

√
µ

L
,

and the rest follows from the assumptions. Now suppose that the statements hold for 1, 2, · · · , k− 1.

Consider the case for k.

The induction hypothesis implies that d2(xk, x∗) ≤ τ2

200 K−1
√

µ
L , and

d2
wk
(zk, x∗) ≤ 1

Bk
p0 ≤

5

2µ

1

A0

(
A0( f (x0)− f (x∗) + B0d2

w0
(z0, x∗)

)

≤ 5

2µ

(
L

2
d2(x0, x∗) +

µ

2
d2(x0, x∗)

)

=
5

4

(
L

µ
+ 1

)
d2(x0, x∗) ≤ τ2

160
K−1

√
µ

L

On the other hand, since

d2(wk, x∗) ≤ ωd2(xk, x∗) ≤ ωτ2

200
K−1

(µ

L

) 1
2
<

1

2K
, (C.18)

the distortion inequality (3.4) implies that

d2(zk, x∗) ≤ (1 + 4Kd2(wk, x∗))d2
wk
(zk, x∗) ≤ τ2

80
K−1

√
µ

L
. (C.19)
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The inequalities (C.18) and (C.19) together implies that

d2(zk, wk) ≤ 2
(
d2(wk, x∗) + d2(zk, x∗)

)
≤ 2ω + 5

50
τ2K−1

√
µ

L

Hence, the distortion rate δk can be bounded as follows:

δk ≤ 1 + 4Kd2(wk, zk) < 1 +
2ω + 5

10
τ2

√
µ

L
≤ 1 +

c

20

√
µ

L
≤ 1 +

1

10

√
µλ

1 + µλ
.

The induction hypothesis implies that ξk ≥ 9
10

√
µλ

1+µλ =: ξ∗, and recall the equation

δkξk+1

(
ξk+1 −

µλ

1 + µλ

)
= ξ2

k(1− ξk+1)

To show ξk+1 ≥ 9
10

√
µλ

1+µλ , it suffices to show that

δkξ∗

(
ξ∗ −

µλ

1 + µλ

)
≤ ξ2

∗(1− ξ∗)⇔ δk

(
1− 10

9
ξ∗

)
≤ 1− ξ∗

The final equation holds since δ ≤ 1 + 1
9 ξ∗.

Now it remains to show potential decrease pk+1 ≤ pk; it suffices to prove that (C.16) holds. Since

SK(r) ≤ 1
3 Kr2 when Kr2 ≤ 1, the assumptions imply that

12d∗(wk+1; xk, zk) · SK (d(xk, zk) + 2d∗(wk+1; xk, zk))

≤ 4ρ1dwk+1
(xk+1, yk) · K (d(xk, zk) + 2d∗(wk+1; xk, zk))

2

≤ 4ρ1K

(
7

100
τ2K−1 +

1

10
ρ2

2τ2K−1

)√
µ

L
dwk+1

(xk+1, yk)

≤ 1− σ

2
c

√
µ

L
dwk+1

(xk+1, yk) ≤ (1− σ)
√

µλdwk+1
(xk+1, yk)

so that (C.16) holds. The proof is completed. �

Finally, we have the following corollary on acceleration for smooth functions.

Corollary C.17. Under the assumptions of Theorem C.16, we have

f (xk)− f (x∗) ≤ 1

Ak
p0 ≤

τ2

400
K−1L

(µ

L

) 3
2

(
1− 9

√
c

10
√

2

√
µ

L

)k

D Details of Section 4

In this section, we provide detailed description of the algorithms we discussed in Section 4 and

verification that they can be recovered from the Riemannian A-HPE framework. Throughout this

section, we assume that f is L-smooth.

D.1 Algorithms without the additional distortion

First, we look at the Riemannian Nesterov’s method, which is proposed and studied in Ahn and Sra

[4], Zhang and Sra [38] and, to the best of our knowledge, the only provably accelerated method in

our setting. The update of this method is given in Algorithm 3.

Proposition D.1. Algorithm 3 can be recovered from Algorithm 2 by choosing σk = σ, λ ∈
(

0, σ2

2L

)
,

wk+1 = yk, xk+1 = Expyk
(−λk∇ f (yk)) and vk+1 = ∇ f (yk) + µExp−1

yk
(xk+1).
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Algorithm 3: Riemannian Nesterov’s Method

Input : Objective function f , initial point x0, σ ∈
(
0, 3

4

)
, parameters L, µ, initial weight A0 ≥ 0

1 z0 ← x0 and λ← σ2

2L

2 for k = 0, 1, · · · do

3 choose a valid distortion rate δk according to Lemma 3.4

4 θk ← the smaller root of Bk(1− θ)2 = µλθ
(
(1− θ)Bk +

µ
2 δk Ak

)

5 Bk+1 ← Bk
θkδk

, ak+1 ← 2µ−1(1− θk)Bk+1 and Ak+1 ← Ak + ak+1

6 yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)

7 xk+1 ← Expyk
(−λ∇ f (yk))

8 zk+1 ← Expyk

(
θkExp

−1
yk
(zk)− µ−1(1− θk)∇ f (yk)

)

Proof: It remains to check that the specified update rule satisfies the inequality (3.2) in the defini-

tion of iprox. Indeed we have

LHS =
λk

2(1 + λkµ)

(
f (xk+1)− f (yk)−

〈
Exp−1

yk
(xk+1),∇ f (yk)

〉)

+

(
λ2

kµ2

2(1 + λkµ)2
− λkµ

2(1 + λkµ)

)
d2(yk, xk+1)

≤ λkL

2(1 + λkµ)
d2(yk, xk+1) ≤

σ2
k

2(1 + λkµ)2
d2(yk, xk+1) = RHS

so that the result follows. �

The second example is given in Algorithm 4. It is a direct generalization of the accelerated

method [16, Algorithm 3] to Riemannian setting, and can be viewed as a variant of Nesterov’s

method with an additional gradient descent step. To the best of our knowledge, the algorithm is

new and its convergence property is not known in Riemannian setting.

Algorithm 4: Riemannian Nesterov’s method with an extra gradient step

Input : Objective function f , initial point x0, σ ∈
(
0, 3

4

)
, parameters L, µ, initial weight A0 ≥ 0

1 z0 ← x0 and λ← σ2

2L

2 for k = 0, 1, · · · do

3 choose a valid distortion rate δk according to Lemma 3.4

4 θk ← the smaller root of Bk(1− θ)2 = µλθ
(
(1− θ)Bk +

µ
2 δk Ak

)

5 Bk+1 ← Bk
θkδk

, ak+1 ← 2µ−1(1− θk)Bk+1 and Ak+1 ← Ak + ak+1

6 xk ← Expx̃k
(−λ∇ f (x̃k))

7 yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)

8 x̃k+1 ← Expyk
(−λ∇ f (yk))

9 zk+1 ← Expyk

(
θkExp

−1
yk
(zk)− µ−1(1− θk)∇ f (yk)

)

Proposition D.2. Algorithm 4 can be recovered from Algorithm 2 by choosing σk = σ = 3
4 , wk+1 = yk,
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vk+1 = ∇ f (yk) + µExp−1
yk
(xk+1) and xk+1 defined by

x̃k+1 = Expxk+1
(−λk∇ f (xk+1)) , xk+1 = Expx̃k+1

(−λk∇ f (x̃k+1)) .

Proof: It suffices to check that the iprox definition is satisfied. Smoothness implies that

f (xk+1)− f (yk)−
〈
Exp−1

yk
(xk+1),∇ f (yk)

〉
≤ L

2
d2(xk+1, yk).

On the other hand, we can bound ‖Exp−1
yk
(xk+1) + λkvk+1‖2 as follows:

‖Exp−1
yk
(xk+1) + λkvk+1‖2 = ‖(1 + µλk)Exp

−1
yk
(xk+1) + λk∇ f (yk)‖2

= (1 + µλk)
2d2(xk+1, yk) + 2λk(1 + µλk)

〈
Exp−1

yk
(xk+1),∇ f (yk)

〉
+ λ2

k‖∇ f (yk)‖2

≤ (1 + µλk)
2d2(xk+1, yk) + λ2

k‖∇ f (yk)‖2

− 2λk(1 + µλk)
(

f (yk)− f (xk+1) +
µ

2
d2(yk, xk+1)

)

= (1 + µλk)d
2(xk+1, yk) + d2(yk, x̃k+1)

− 2λk(1 + µλk)

(
1

λk
− L

2

) (
d2(yk, x̃k+1) + d2(x̃k+1, xk+1)

)

≤ (1 + µλk)d
2(xk+1, yk)

− 2

(
(1 + µλk)

(
1− L

2
λk

)
− 1

2

) (
d2(yk, x̃k+1) + d2(x̃k+1, xk+1)

)

≤
(

L

2
λk(1 + µλk) +

1

2

)
d2(xk+1, yk)

(D.1)

Finally, the choice of λ satisfies Lλ(1 + µλ) ≤ 1
2 , hence the result follows. �

D.2 Algorithms with the additional distortion

In this section, we discuss specific examples of first-order methods that can be obtained from Algo-

rithm 2 as special cases. The setting considered here is more general than the previous subsection,

in that we do not require that wk+1 is chosen on the geodesic connecting xk and zk, and we can apply

Corollary 3.13 to obtain local (full) acceleration.

We first present a method, called Riemannian accelerated extra-gradient descent (RAXGD), in Algo-

rithm 5. To see its difference with Riemannian Nesterov’s method, note that it uses two gradients

each iteration. RAXGD can be seen as a Riemannian and strongly-convex version of the accelerated

extra-gradient method proposed by [20]. To the best of our knowledge, this method has not been

proposed or studied before.

The following proposition shows that Algorithm 5 can be considered as a special case of Algo-

rithm 2.

Proposition D.3. Algorithm 5 can be recovered from Algorithm 2 by choosing σk = σ ∈ (0, 1), λ ≤ σ
L ,

v = ∇ f (xk+1) and wk+1 = xk+1 = Expyk
(−λk∇ f (yk)). Moreover, the conditions in Theorem C.16 are

satisfied with ρ1 = ρ2 = ω = 1.
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Algorithm 5: Riemannian accelerated extra-gradient descent

Input : Objective function f , initial point x0, σk ∈ (0, 1), parameters L, µ, initial weight

A0, B0 > 0

1 z0 ← x0 and λ← σ
L

2 for k = 0, 1, · · · do

3 choose a valid distortion rate δk according to Lemma 3.4

4 θk ← the smaller root of Bk(1− θ)2 = µλkθ
(
(1− θ)Bk +

µ
2 δk Ak

)

5 Bk+1 ← Bk
θkδk

, ak+1 = 2µ−1(1− θk)Bk+1 and Ak+1 = Ak + ak+1

6 yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)

7 xk+1 ← Expyk
(−λ∇ f (yk))

8 zk+1 ← Expxk+1

(
θkExp

−1
xk+1

(zk)− µ−1(1− θk)∇ f (xk+1)
)

Proof: We have (xk+1, vk+1) ∈ iprox
wk+1

f (yk, λk, εk), since
∥∥∥Exp−1

xk+1
(yk)− λk∇ f (xk+1)

∥∥∥ = λk

∥∥Γ
xk+1
yk
∇ f (yk)−∇ f (xk+1)

∥∥

≤ Lλkd(yk, xk+1) ≤ σkd(xk+1, yk).

Finally, note that

d∗(wk+1; xk, zk) ≤ d(xk+1, yk) ≤
1

L
‖∇ f (yk)‖ ≤ d(yk, x∗),

the conclusion follows. �

We can also design new accelerated algorithms by choosing different realizations of the iprox

operator in Algorithm 2. This can lead to novel algorithms that are previously unknown even in

Euclidean setting. In the following we derive from Algorithm 2 a generalized version of RAXGD,

given in Algorithm 6.

Algorithm 6: Generalized Riemannian accelerated extra-gradient descent

Input : Objective function f , initial point x0, σk ∈ (0, 1), parameters L, µ, initial weight

A0, B0 > 0

1 z0 ← x0 and λ← σ
2L

2 for k = 0, 1, · · · do

3 choose a valid distortion rate δk according to Lemma 3.4

4 θk ← the smaller root of Bk(1− θ)2 = µλkθ
(
(1− θ)Bk +

µ
2 δk Ak

)

5 Bk+1 ← Bk
θkδk

, ak+1 = 2µ−1(1− θk)Bk+1 and Ak+1 = Ak + ak+1

6 yk ← Expxk

(
θkak+1

Ak+θak+1
Exp−1

xk
(zk)

)

7 wk+1 ← Expyk
(−λ∇ f (yk))

8 choose xk+1 such that d(wk+1, xk+1) ≤ 1−σ
3 d(yk, xk+1)

9 zk+1 ← Expxk+1

(
θkExp

−1
xk+1

(zk)− µ−1(1− θk)∇ f (xk+1)
)

Rather than obtain xk+1 directly from a gradient descent step, it allows arbitrary choices of xk+1

as long as a distance inequality

d(wk+1, xk+1) ≤
1− σ

3
d(yk, xk+1) (D.2)
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is satisfied. The inequality is obviously satisfied when xk+1 = wk+1, which reduces to Algorithm 5.

Intuitively, (D.2) implies that xk+1 is obtained by starting from yk and following an ‘approximately

descent’ direction. In Euclidean setting, the solution set of (D.2) for xk+1 is a region enclosed by an

Apollonius circle that contains wk+1.

Proposition D.4. Algorithm 6 is a special case of Algorithm 2. Moreover, the conditions in Theorem C.16

holds with ρ1 = 4, ρ2 = 1 and ω = 3
2 .

Proof: To check that Algorithm 6 can be obtained from Algorithm 2, it suffices to verify that the

update of xk+1 satisfies (3.2).

Since f is L-smooth, we have

λ

1 + µλ

(
f (xk+1)− fwk+1

(xk+1)
)
≤ Lλ

2
d2(xk+1, wk+1) ≤

1

2
d2(xk+1, yk).

On the other hand

‖Exp−1
wk+1

(xk+1)− Exp−1
wk+1

(yk) + λvk+1‖2

= ‖(1 + µλ)Exp−1
wk+1

(xk+1)− Exp−1
wk+1

(yk) + λ∇ f (wk+1)‖2

≤ 2(1 + µλ)2d2(wk+1, xk+1) + 2λ2
∥∥∇ f (wk+1)− Γ

wk+1
yk
∇ f (yk)

∥∥2

≤ 2(1 + µλ)2d2(wk+1, xk+1) + 2L2λ2d2(wk+1, yk)

≤ 2
(
(1 + µλ)2 + 2L2λ2

)
d2(wk+1, xk+1) + 4L2λ2d2(xk+1, yk)

≤ 3(1 + µλ)2d2(wk+1, xk+1) + σ2d2(xk+1, yk)

≤ (1 + µλ)2d2(xk+1, yk)

where the last step uses (D.2). Hence (3.2) holds. �

By Theorem C.16, we deduce that Algorithm 6 achieves acceleration when initialized in an

O
(

K−
1
2

( µ
L

) 3
4

)
. To the best of our knowledge, Algorithm 6 has not been studied even for strongly-

convex functions in the Euclidean setting.

We emphasize that the purpose of introducing Algorithm 6 is to show that Algorithm 2 can lead

to many different types of accelerated first-order methods. There are of course other ways to specify

the iprox operator, which would lead to many interesting algorithms.

D.3 Discussion of the extra-point framework in Huang and Zhang [24]

In a recent work Huang and Zhang [24], the authors propose an extra-point approach motivated

by the analysis of classical accelerated methods. Based on this idea, they propose a framework for

smooth strongly-convex optimization, which is in a quite general form and contains a total of 9

parameters. For convenience we give the detailed updates of their framework below.

pk ← t1xk + t2zk (D.3a)

yk ← a solution of 〈∇ f (yk), pk − yk〉 ≥ 0 (D.3b)

x̃k+1 ← yk −
t3

L
∇ f (yk) (D.3c)

xk+1 ← yk −
t4

L
∇ f (x̃k+1)−

t5

L
(∇ f (x̃k+1)−∇ f (yk)) + t6 (x̃k+1 − yk) (D.3d)

zk+1 ← t7zk + t8yk − t9∇ f (yk) (D.3e)
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The authors derive sufficient conditions on the choice of ti, 1 ≤ i ≤ 9 so that (D.3) can achieve

acceleration. While their framework looks complicated, in the following we show that it can be

interpreted quite naturally from the PPM viewpoint introduced in Section 2.

First, (D.3e) is very similar to the update of zk+1 in A-HPE; one can see this by comparing it with

(B.2), with the choice wk+1 = yk and vk+1 = ∇ f (yk) + µ (xk+1 − yk). With properly chosen constants

t7, t8, t9, (D.3e) can then be interpreted as an approximate PPM scheme.

Second, (D.3c) and (D.3d) together give a gradient-descent-type update formula of xk+1. In

particular, (D.3d) can also be written as

xk+1 ← yk −
t3t6 − t5

L
∇ f (yk)−

t4 + t5

L
∇ f (x̃k+1),

which is very similar to the Riemannian Nesterov’s method with multiple gradient steps that we

introduced in Algorithm 4. As a result, the update of xk+1 can also be interpreted as another

approximate PPM scheme.

Recall the arguments in Section 2 that the final step is to combine these two schemes and obtain

potential decrease. In A-HPE this is implemented by a simple convex combination of the iterates xk

and zk. However, in (D.3) the procedure is more complex: first a convex combination is obtained

(i.e. the update of pk), and then yk is chosen to be any solution of the inequality (D.3b).

This procedure, in fact, can be easily justified by one additional step in the analysis: intuitively,

yk is a refinement of the convex combination. Specifically, as argued in the proof of Lemma B.4, the

combination of two PPM approaches is implemented by the following inequality:

θz‖zk − xk+1 + µ−1vk+1‖2 + θx‖xk − xk+1 + µ−1vk+1‖2 ≥ (θz + θx)‖pk − xk+1 + µ−1vk+1‖2.

Since xk+1 − µ−1vk+1 = yk − µ−1∇ f (yk), we have

‖pk − xk+1 + µ−1vk+1‖2 = ‖pk − yk + µ−1∇ f (yk)‖2 ≥ ‖∇ f (yk)‖2 = ‖yk − xk+1 + µ−1vk+1‖2,

where the inequality exactly follows from (D.3b)!

Now we have seen that the framework of [24] uses the same idea of approximate-PPM as A-HPE,

except that the combination step is more general. On the other hand, the framework is limited to

the choice of wk+1 = yk in the definition of iprox, while A-HPE allows more flexible choices.

Finally, we provide a natural extension of the framework to the Riemannian setting:

pk ← Expxk

(
t2Exp

−1
xk
(zk)

)

yk ← a solution of
〈
∇ f (yk), Exp

−1
yk
(pk)

〉
≥ 0

x̃k+1 ← Expyk

(
− t3

L
∇ f (yk)

)

xk+1 ← Expx̃k+1

(
(1− t6)Exp

−1
x̃k+1

(yk)−
t4

L
∇ f (x̃k+1)−

t5

L

(
∇ f (x̃k+1)− Γ

x̃k+1
yk
∇ f (yk)

))

zk+1 ← Expyk

(
t7Exp

−1
yk
(zk)− t9∇ f (yk)

)

Local acceleration of the framework can be shown using our in approach Section 3. For the

special case yk = pk, the additional distortion disappears and the framework attains global eventual

acceleration.
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