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Abstract

It is well-known that modern neural networks are vulnerable to adversarial exam-
ples. To mitigate this problem, a series of robust learning algorithms have been
proposed. However, although the robust training error can be near zero via some
methods, all existing algorithms lead to a high robust generalization error. In this
paper, we provide a theoretical understanding of this puzzling phenomenon from
the perspective of expressive power for deep neural networks. Specifically, for
binary classification problems with well-separated data, we show that, for ReLU
networks, while mild over-parameterization is sufficient for high robust training
accuracy, there exists a constant robust generalization gap unless the size of the
neural network is exponential in the data dimension d. This result holds even
if the data is linear separable (which means achieving standard generalization is
easy), and more generally for any parameterized function classes as long as their
VC dimension is at most polynomial in the number of parameters. Moreover, we
establish an improved upper bound of exp(O(k)) for the network size to achieve
low robust generalization error when the data lies on a manifold with intrinsic
dimension k (k � d). Nonetheless, we also have a lower bound that grows ex-
ponentially with respect to k — the curse of dimensionality is inevitable. By
demonstrating an exponential separation between the network size for achieving
low robust training and generalization error, our results reveal that the hardness of
robust generalization may stem from the expressive power of practical models.

1 Introduction

Deep neural networks have achieved remarkable success in a variety of disciplines including com-
puter vision (Voulodimos et al., 2018), natural language processing (Devlin et al., 2018) as well as
scientific and engineering applications (Jumper et al., 2021). However, it is observed that neural
networks are often sensitive to small adversarial attacks (Biggio et al., 2013; Szegedy et al., 2013;
Goodfellow et al., 2014), which potentially gives rise to reliability and security problems in real-
world applications.

In light of this pitfall, it is highly desirable to obtain classifiers that are robust to small but adversarial
perturbations. A common approach is to design adversarial training algorithms by using adversarial
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examples as training data (Madry et al., 2017; Tramèr et al., 2018; Shafahi et al., 2019). Another line
of works (Cohen et al., 2019; Zhang et al., 2021a) proposes some provably robust models to tackle
this problem. However, while the state-of-the-art adversarial training methods can achieve high
robust training accuracy (e.g. nearly 100% on CIFAR-10 (Raghunathan et al., 2019)), all existing
methods suffer from large robust test error. Therefore, it is natural to ask what is the cause for such
a large generalization gap in the context of robust learning.

Previous works have studied the hardness of achieving adversarial robustness from different per-
spectives. A well-known phenomenon called the robustness-accuracy tradeoff has been empirically
observed (Raghunathan et al., 2019) and theoretically proven to occur in different settings (Tsipras
et al., 2019; Zhang et al., 2019). Dohmatob (2019) shows that adversarial robustness is impossible
to achieve under certain assumptions on the data distribution, while it is shown in Nakkiran (2019)
that even when an adversarial robust classifier does exist, it can be exponentially more complex than
its non-robust counterpart. Hassani and Javanmard (2022) studies the role of over-parameterization
on adversarial robustness by focusing on random features regression models.

At first glance, these works seem to provide convincing evidence that robustness is hard to achieve in
general. However, this view is challenged by Yang et al. (2020), who observes that for real data sets,
different classes tend to be well-separated (as defined below), while the perturbation radius is often
much smaller than the separation distance. As pointed out by Yang et al. (2020), all aforementioned
works fail to take this separability property of data into consideration.
Definition 1.1 (Separated data). Suppose that A,B ⊂ Rd and ϵ > 0. We say that A,B are ϵ-
separated under ℓp norm (1 ≤ p ≤ +∞) if

‖xA − xB‖p ≥ ϵ, ∀xA ∈ A,xB ∈ B.

Indeed, this assumption is necessary to ensure the existence of a robust classifier. Without this
separated condition, it is clear that there is no robust classifier even if a non-robust classifier always
exists, as discussed above.

Recently, Bubeck and Sellke (2021) shows that for regression problems, over-parameterization may
be necessary for achieving robustness. However, they measure robustness of a model by its training
error and Lipschitz constant, which has a subtle difference with robust test error (Madry et al., 2017);
see the discussions in (Bubeck and Sellke, 2021, Section 1.1).

To sum up the above, although existing robust training algorithms result in low robust test accuracy,
previous works do not provide a satisfactory explanation of this phenomenon, since there exists a
gap between their settings and practice. In particular, it is not known whether achieving robustness
can be easier for data with additional structural properties such as separability (Yang et al., 2020)
and low intrinsic dimensionality (Gong et al., 2019).

In this paper, we make an important step towards understanding robust generalization from the
viewpoint of neural network expressivity. Focusing on binary classification problems with separated
data (cf. Definition 1.1) in Rd, we make the following contributions:

• Given a data set D of size N that satisfies a separability condition, we show in Section 2
that it is possible for a ReLU network with Õ(Nd) weights to robustly classify D. In other
words, an over-parameterized ReLU network with reasonable size can achieve 100% robust
training accuracy.

• We next consider the robust test error (cf. Definition 3.1). As a warm-up, we show in
Section 3 that, in contrast with the robust training error, mere separability of data does
not imply that low robust test error can be attained by neural networks, unless their size
is exponential in d. This motivates the subsequent sections where we consider data with
additional structures.

• In Section 4, we prove the main result of this paper, which states that for achieving low
robust test error, an exp(Ω(d)) lower bound on the network size is inevitable, even when
the underlying distributions of the two classes are linear separable. Moreover, this lower
bound holds for arbitrarily small perturbation radius and more general models as long as
their VC dimension is at most polynomial in the number of parameters.

• Finally, in Section 5 we consider data that lies on a k-dimensional manifold (k � d), and
prove an improved upper bound exp(O(k)) for the size of neural networks for achieving
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Table 1: Summary of our main results.

Params
Setting

Robust Training Robust Generalization
General Case Linear Separable k−dim Manifold

Upper Bound O(Nd) exp(O(d)) exp(O(k))
(Thm 2.2) (Thm 3.3) (Thm 5.5)

Lower Bound Ω(
√
Nd) exp(Ω(d)) exp(Ω(d)) exp(Ω(k))

(Thm 2.3) (Thm 3.4) (Thm 4.3) (Thm 5.8)

low robust test error. Nonetheless, the curse of dimensionality is inescapable – the lower
bound is also exponential in k.

The upper and lower bounds on network size are summarized in Table 1. Overall, our theoretical
analysis suggests that the hardness of achieving robust generalization may stem from the expressive
power of practical models.

1.1 Implications of our results

Before moving on to technical parts, we would like to first discuss the implications of our results by
comparing them to previous works.

Our main result is the exponential lower bound on the neural network size for generalization. First,
different from previous hardness results, our result is established for data sets that have desirable
structural properties, hence more closely related to practical settings. Note that the separability
condition implies that there exists a classifier that can perfectly and robustly classify the data i.e.
achieve zero robust test error. However, we show that such classifier is hard to approximate using
neural networks with moderate size.

Second, it is a popular belief that many real-world data sets are intrinsically low dimensional, al-
though they lie in a high dimensional space. Our results imply that low dimensional structure makes
robust generalization possible with a neural network with significantly smaller size (when k � d).
However, the size must still be exponential in k.

Finally, we show that there exists an exponential separation between the required size of neural
networks for achieving low robust training and test error. Based on our results, we conjecture that
the widely observed drop of robust test accuracy is not due to limitations of existing algorithms –
rather, it is a more fundamental issue originating from the expressive power of neural networks.

1.2 Related works

Robust Generalization. One surprising behavior of deep learning is that over-parameterized neural
networks can generalize well despite their ability to fit random data (Zhang et al., 2017; Belkin et al.,
2019). However, in contrast to the standard (non-robust) generalization, for the robust setting, Rice
et al. (2020) empirically investigates robust performance of models based on adversarial training
methods, which are designed to improve adversarial robustness (Szegedy et al., 2013; Madry et al.,
2017), and shows that robust overfitting can be observed on multiple datasets. From the theoretical
side, Madry et al. (2017) proposes the notion of robust test error to measure the performance of a
model under adversarial attacks, and the required sample complexity is studied in various settings
(Schmidt et al., 2018; Bhagoji et al., 2019; Dan et al., 2020; Bhattacharjee et al., 2021). In this paper,
we mainly focus on this robust generalization gap and provide a theoretical understanding from the
perspective of expressive power.

Robust interpolation. Bubeck et al. (2021) proposes a conjecture that over-parameterization is nec-
essary for smooth interpolation. Then Bubeck and Sellke (2021) establishes a law of robustness for
isoperimetric data. Specifically, they prove an Ω̃(

√
Nd/p) Lipschitzness lower bound for smooth

interpolation, where N, d, and p denote the sample size, the inputs’ dimension, and the number of
parameters, respectively. This result indicates that over-parameterization may be necessary for ro-
bust learning. Zhang et al. (2022) studies many data are needed for robust interpolation. This line
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of works focuses on the training error and the worst-case robustness (i.e. Lipschitz constant), while
we measure robustness via the robust generalization error.

Memorization power of neural networks. Our work is related to another line of works (e.g., Baum,
1988; Yun et al., 2019; Bubeck et al., 2020; Zhang et al., 2021a; Rajput et al., 2021; Zhang et al.,
2021b; Vardi et al., 2021) on the memorization power of neural networks. Among these works, Yun
et al. (2019) shows that a neural network with O(N) parameters can memorize the data set with
zero error, whereN is the size of the data set. Under an additional separable assumption, Vardi et al.
(2021) derives an improved upper bound of Õ(

√
N), which is shown to be optimal. In this work, we

show that Õ(Nd) parameters is sufficient for achieving low robust training error. This is in contrast
with our exponential lower bound for low robust test error.

Function approximation. Our work is related to a line of works on function approximation via
neural networks (e.g., Cybenko, 1989; Hornik, 1991; Lu et al., 2017; Yarotsky, 2017; Hanin, 2019).
Yarotsky (2017) is the most related, which shows that the functions in Sobolev spaces can be uni-
formly approximated by deep ReLU networks. Also related is the studies of using deep ReLU
networks to approximate functions supported on low dimensional manifolds (Chui and Mhaskar,
2018; Shaham et al., 2018; Chen et al., 2019). In particular, Chen et al. (2019) proves that any Cn

function in Hölder spaces can be ϵ-approximated by the neural network with size O(ϵ−k/n), where
k is the intrinsic dimension of the manifold embedded in Rd. In the robust classification scenario,
we can also achieve dimensionality reduction for low-dimensional data.

1.3 Notations

Throughout this paper, we use ‖·‖p , p ∈ [1,+∞] to denote the ℓp norm in the vector space Rd. For
x ∈ Rd and A ⊂ Rd, we can define the distance between x and A as dp(x, A) = inf{‖x − y‖p :

y ∈ A}. For r > 0, Bp(x, r) =
{
y ∈ Rd : ‖x− y‖p ≤ r

}
is defined as the ℓp-ball with radius r

centered at x. For a function class F , we use dV C(F) to denote its VC-dimension. A multilayer
neural network is a function from input x ∈ Rd to output y ∈ Rm, recursively defined as follows:

h1 = σ (W1x+ b1) , W1 ∈ Rm1×d, b1 ∈ Rm1 ,

hℓ = σ (Wℓhℓ−1 + bℓ) , Wℓ ∈ Rmℓ×mℓ−1 , bℓ ∈ Rmℓ , 2 ≤ ℓ ≤ L− 1,

y = WLhL + bL, WL ∈ Rm×mL , bL ∈ Rm,

where σ is the activation function and L is the depth of the neural network. In this paper, we mainly
focus on ReLU networks i.e. σ(x) = max{0, x}. The size of a neural network is defined as its
number of weights/parameters i.e. the number of its non-zero connections between layers.

2 Mild Over-parameterized ReLU Nets Achieve Zero Robust Training Error

With access to only finite amount of data, a common practice for learning a robust classifier is to
minimize the robust training error(defined below). In this section, we show that neural networks
with reasonable size can achieve zero robust training error on a finite training set.
Definition 2.1 (Robust training error). Given a data set D = {(xi, yi)}1≤i≤N , yi ∈ {−1,+1} and
an adversarial perturbation radius δ ≥ 0, the robust training error of a classifier f is defined as
L̂p,δ
D (f) = 1

N

∑N
i=1 I {∃x′ ∈ Bp(xi; δ), sgn(f(x

′)) 6= yi}.

When δ = 0, the definition coincides with the standard training error. In this paper, we mainly focus
on the case p = 2 and p = ∞, but our results can be extended to general p as well.

The following is our main result in this section, which states that for binary classification problems,
a neural network with Õ(Nd) weights can perfectly achieve robust classification on a data set of
size N . The detailed proof is deferred to Appendix B.3.
Theorem 2.2. Suppose that D ⊂ Bp(0, 1) with p ∈ {2,+∞} consists of N data, and the two
classes in D are 2ϵ-separated (cf. Definition 1.1), where ϵ ∈

(
0, 12

)
is a constant. Let robustness

radius δ < 1
2ϵ, then there exists a classifier f represented by a ReLU network with at most

O
(
Nd log

(
δ−1d

)
+N · polylog(δ−1N)

)
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parameters, such that L̂p,δ
D (f) = 0.

Theorem 2.2 implies that neural networks is quite efficient for robust classification of finite training
data. We also derive a lower bound in the same setting, which is stated below. It is an interesting
future direction to study whether this lower bound can be achieved.
Theorem 2.3. Let p ∈ {2,+∞} and Fn be the set of functions represented by ReLU networks
with at most n parameters. For arbitrary 2ϵ-separated data set D under ℓp norm, if there exists a
classifier f ∈ Fn such that L̂p,δ

D (f) = 0, then it must hold that n = Ω(
√
Nd).

The detailed proof of Theorem 2.3 is in Appendix B.4. We leave it as a future direction to study
whether this lower bound can be attained. While optimal (non-robust) memorization of N data
points only needs constant width (Vardi et al., 2021), our construction in Theorem 2.2 has width
Õ(Nd). Therefore, if our upper bound is tight, then Theorem 2.2 can probably explain why increas-
ing the network width can benefit robust training (Madry et al., 2017).

3 Hardness of Robust Generalization : A Warm-up

In the previous section, we give an upper bound on the size of ReLU networks to robustly classify
finite training data. However, it says nothing about generalization, or the robust test error, which
is arguably a crucial aspect of evaluating the performance of a trained model. As a warm-up, in
this section we first consider the same setting as Section 2 where we only assume the data to be
well-separated. We show that in this setting, even achieving high standard test accuracy requires
exponentially large neural networks in the worst case, which is quite different from empirical obser-
vations. This motivates to consider data with additional structures in subsequent sections.
Definition 3.1 (Robust test error). Given a probability measure P on Rd × {−1,+1} and a robust
radius δ ≥ 0, the robust test error of a classifier f : Rd → R w.r.t P and δ under ℓp norm is defined
as Lp,δ

P (f) = E(x,y)∼P

[
max∥x′−x∥p≤δ I{sgn(f(x′)) 6= y}

]
.

In contrast with the training set which only consists of finite data points, when studying generaliza-
tion, we must consider potentially infinite points in the classes that we need to classify. As a result,
we consider two disjoint sets A,B ∈ [0, 1]d, where points in A have label +1 and points in B have
label −1. We are interested in the following questions:

• Does there exists a robust classifier of A and B?
• If so, can we derive upper and lower bounds on the size of a neural network to robustly

classify A and B?

It turns out that, similar to the previous section, the ϵ-separated condition (cf. Definition 1.1) ensures
the existence of such a classifier. Moreover, it can be realized by a Lipschitz function. This fact has
been observed in Yang et al. (2020), and we provide a different version of their result below for
completeness.
Proposition 3.2. For 2ϵ-separated A,B ⊂ [0, 1]d under ℓp norm with p ∈ {2,+∞}, the clas-
sifier f∗(x) :=

dp(x,B)−dp(x,A)
dp(x,A)+dp(x,B) is ϵ−1-Lipschitz continuous, and satisfies Lp,ε

P (f∗) = 0 for any
probability distribution P on A ∪B.

Based on this observation, Yang et al. (2020) concludes that adversarial training is not inherently
hard. Rather, they argue that current pessimistic results on robust test error is due to the limits
of existing algorithms. However, it remains unclear whether the Lipschitz function constructed in
Proposition 3.2 can actually be efficiently approximated by neural networks. The following theorem
shows that ReLU networks with exponential size is sufficient for as robust classification.
Theorem 3.3. For any two 2ϵ-separated A,B ⊂ [0, 1]d under ℓp norm with p ∈ {2,+∞}, distribu-
tion P on the supporting set S = A ∪ B and robust radius c ∈ (0, 1), there exists a ReLU network
f with at most Õ

(
((1− c)ϵ)−d

)
parameters, such that Lp,cϵ

P (f) = 0.

The detailed proof is deferred to Appendix C.1. Indeed, it is well known that without additional
assumptions, an exponentially large number of parameters is also necessary for approximating a
Lipschitz function (DeVore et al., 1989; Shen et al., 2022). This result motivates us to consider the
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second question listed above. The following result implies that even without requiring robustness,
neural networks need to be exponentially large to correctly classify A and B:
Theorem 3.4. Let Fn be the set of functions represented by ReLU networks with at most n param-
eters. Suppose that for any 2ϵ-separated sets A,B ⊂ [0, 1]d under ℓp norm with p ∈ {2,+∞},
there exists f ∈ Fn that can classify A,B with zero (standard) test error, then it must hold that
n = Ω

(
(2ϵ)−

d
2 (d log (1/2ϵ))

− 1
2

)
.

Theorem 3.4 implies that mere separability of data sets is insufficient to guarantee that they can be
classified by ReLU networks, unless the network size is exponentially large. The detailed proof is
in Appendix C.2.

However, one should be careful when interpreting the conclusion of Theorem 3.4, since real-world
data sets may possess additional structural properties. Theorem 3.4 does not take these properties
into consideration, so it does not rule out the possibility that these additional properties make robust
classification possible. Specifically, the joint distribution of data can be decomposed as

P(X,Y ) = P(Y | X)︸ ︷︷ ︸
labeling mapping

P(X)︸ ︷︷ ︸
input

,

where P(X,Y ),P(Y | X), and P(X) denote the joint, conditional and marginal distributions,
respectively. In subsequent sections, we consider two well-known properties of data sets that corre-
spond to the labeling mapping structure (Section 4) and the input structure (Section 5), respectively,
and study whether they can bring improvement to neural networks’ efficiency for robust classifica-
tion.

4 Robust Generalization for Linear Separable Data

We have seen that for separated data, if no other structural properties are taken into consideration,
even standard generalization requires exponentially large neural networks. However, in practice it is
often possible to train neural networks that can achieve fairly high standard test accuracy, indicating
a gap between the setting of Section 3 and practice.

This motivates us to consider the following question: assuming that there exists a simple classifier
that achieves zero standard test error on the data, is it guaranteed that neural networks with reason-
able size can also achieve high robust test accuracy?

We give a negative answer to this question. Namely, we show that even in the arguably simplest set-
ting where the given data is linear separable and well-separated (cf. Definition 1.1), ReLU networks
still need to be exponentially large to achieve high robust test accuracy.

4.1 Main results under the linear separable assumption

Clearly, the robust test error (cf. Definition 3.1) depends on the underlying distribution P . We
consider a class of data distributions which have bounded density ratio with the uniform distribution:
Definition 4.1 (Balanced distribution). Let S ⊂ Rn such that there exists a uniform probability
measure m0 on S. A distribution P on S is called µ-balanced if

inf

{
P (E)

m0(E)
: E is Lebesgue measurable and m0(E) > 0

}
≥ µ.

Remark 4.2. Definition 4.1 has also appeared in (Shafahi et al., 2018, Theorem 1), which gives
an impossibility result on robust classification, albeit in a completely different setting. Intuitively, it
rules out the possibility that data points in certain regions are heavily under-represented.

The following theorem is the main result of this paper, and the proof sketch is deferred to Section 4.3.
Theorem 4.3. Let ϵ ∈ (0, 1) be a small constant, p ∈ {2,+∞} and Fn be the set of func-
tions represented by ReLU networks with at most n parameters. There exists a sequence Nd =

Ω
(
(2ϵ)−

d−1
6

)
, d ≥ 1 and a universal constant C1 > 0 such that the following holds: for any

c ∈ (0, 1), there exists two linear separable setsA,B ⊂ [0, 1]d that are 2ϵ-separated under ℓp norm,
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such that for any µ0-balanced distribution P on the supporting set S = A∪B and robust radius cϵ
we have

inf {Lp,cϵ
P (f) : f ∈ FNd

} ≥ C1µ0.

Theorem 4.3 states that the robust test error is lower-bounded by a positive constant α = C1µ0

unless the ReLU network has size larger than exp(Ω(d)). On the contrary, if we do not require
robustness, then the data can be classified by a simple linear function. Moreover, this classifier can
be learned with a poly-time efficient algorithm (The detailed proof is in Appendix D.2) :
Theorem 4.4. For any two linear-separable A,B ⊂ [0, 1]d, a distribution P on the supporting set
S = A ∪ B, δ > 0 and β > 0, let H be the family of d−dimensional hyperplane classifiers. Then,
there exists a poly-time efficient algorithm A : 2S → H , for N = Ω(d/β2) training instances
independently randomly sampled from P , with probability 1 − δ over samples, we can use the
algorithm A to learn a classifier f̂ ∈ F such that

LP (f̂) ≤ β,

where LP (f) := P(x,y)∼P {y 6= f(x)} denotes the standard test error.

The practical implication of Theorem 4.3 is two-fold. First, by comparing with Theorem 4.4, one
can conclude that robust classification may require exponentially more parameters than the non-
robust case, which is consistent with the common practice that larger models are used for adversarial
robust training. Second, together with our upper bound in Theorem 2.2, Theorem 4.3 implies an
exponential separation of neural network size for achieving high robust training and test accuracy.

4.2 Exponential lower bound for more general models

In general, our lower bounds hold true for a variety of neural network families and other function
classes as well, as long as their VC dimension is at most polynomial in the number of parameters,
which is formally stated as Theorem 4.5 that can be derived by the proof of Theorem 4.3 directly.
Theorem 4.5. Let ϵ ∈ (0, 1) be a small constant, p ∈ {2,+∞} and Gn be the family of parameter-
ized models with at most n parameters, satisfying the VC-dimension of function family VC-dim(Gn)
is at most poly(n). Then, there exists a sequence Nd = exp(Ω(d)), d ≥ 1 and a universal constant
C ′

1 > 0 such that the following holds: for any c ∈ (0, 1), there exists two linear separable sets
A,B ⊂ [0, 1]d that are 2ϵ-separated under ℓp norm, such that for any µ0-balanced distribution P
on the supporting set S = A ∪B and robust radius cϵ we have

inf {Lp,cϵ
P (g) : g ∈ GNd

} ≥ C ′
1µ0.

In other words, the robust generalization error cannot be lower that a constant α = C ′
1µ0 unless

the model, satisfying the property of their VC dimension polynomially bounded by the number of
parameters, has exponential larger size. Indeed, this property is satisfied for e.g. feedforward neural
networks with sigmoid (Karpinski and Macintyre, 1995) and piecewise polynomial (Bartlett et al.,
2019) activation functions. Therefore, our results reveal that the hardness of robust generalization
may stem from the expressive power of generally practical models.

4.3 Proof sketch of Theorem 4.3

In this subsection, we present a proof sketch for Theorem 4.3 in the ℓ∞-norm case. We only consider
P to be the uniform distribution, extending to µ0-balanced distributions is not difficult, The case of
ℓ2-norm is similar and can be found in the Appendix.

Proof Sketch. Let K = b 1
2εc, and ϕ : {1, 2, · · · ,K}d−1 → {−1,+1} be an arbitrary mapping,

we define Sϕ =
{(

i1
K ,

i2
K , · · · ,

id−1

K , 12 + ϵ0 · ϕ(i1, i2, · · · , id−1)
)
: 1 ≤ i1, i2, · · · , id−1 ≤ K

}
,

where ϵ0 is an arbitrarily small constant. The hyperplane x(d) = 1
2 partitions Sϕ into two sub-

sets, which we denote by Aϕ and Bϕ. It is not difficult to check that Aϕ and Bϕ satisfies all the
required conditions.

Our goal is to show that there exists some choice of ϕ such that robust classification is hard. To
begin with, suppose that robust classification with accuracy 1 − α can be achieved with at most M
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Figure 1: An example of our construction for d = 2. We choose A,B as the set of blue points and
red points, respectively.

parameters for all ϕ, then these networks can all be embedded into an enveloping network Fθ of size
O(M3).

Define S̃ =
{(

i1
K ,

i2
K , · · · ,

id−1

K , 12

)
: 1 ≤ i1, i2, · · · , id−1 ≤ K

}
. Robustness implies that for all

possible label assignment to S̃, at least (1− α)Kd−1 points can be correctly classified by Fθ .

If α = 0 i.e. perfect classification is required, then we can see that the VC-dim(Fθ) ≥ Kd−1 ,
which implies that its size must be exponential, by applying classical VC-dimension upper bounds
of neural networks (Bartlett et al., 2019).

When α > 0, we cannot directly use the bound on VC-dimension. Instead, we use a double-counting
argument to lower-bound the growth function of some subset of S̃.

Let V = 1
2K

d−1. Each choice of ϕ corresponds to
(
(1−α)Kd−1

V

)
labelled V -subset of S̃ that are

correctly classified. There are a total of 2K
d−1

choices of ϕ, while each labelled V -subset can be
obtained by at most 2K

d−1−V different ϕ. As a result, the total number of labelled V -subset correctly
classified by Fθ is at least 2V

(
(1−α)Kd−1

V

)
.

On the other hand, the total number of V -subset of S̃ is
(
Kd−1

V

)
, thus there must exists a V -subset

V0 ⊂ S̃, such that at least(
Kd−1

V

)−1

· 2V
(
(1− α)Kd−1

V

)
≥

(
2
(
(1− α)Kd−1 − V

)
Kd−1 − V

)V

≥ CKd−1

α (1)

different labellings of V0 are correctly classified by Fθ , where Cα =
√
2(1− 2α) > 1 for α = 0.1.

Since (1) provides a lower bound for the growth function, together with the upper bound of growth
function in terms of VC-dimension, we can deduce that VC-dim(Fθ) ≥ 0.05Kd−1. Finally, the
conclusion follows by applying the VC-dimension bounds in Bartlett et al. (2019).

Remark 4.6. The connection between VC dimension and approximation error has been explored
in a number of previous works (Yarotsky, 2017; Shen et al., 2022) to provide lower bounds on the
network size for approximating a given function class. Here we consider the problem of robust clas-
sification which is of more practical interest then function approximation, and our main technical
contribution is an exponential lower bound on the VC dimension. Our proof formalizes the folklore
that adversarial training is hard since it requires a more complicated decision boundary. We note
that similar ideas have been used to show benefits of depth in neural networks (Telgarsky, 2016;
Liang and Srikant, 2017) but their techniques are restricted to one-dimensional functions.

5 Robust Generalization for Low-Dimensional-Manifold Data

In this section, we focus on refined structure of data’s input distribution P(X). A common belief
of real-life data such as images is that the data points lie on a low-dimensional manifold. It pro-
motes a series of methods that are invented to make the dimensionality reduction, including linear
dimensionality reduction (e.g., PCA (Pearson, 1901)) and non-linear dimensionality reduction (e.g.,
t-SNE (Hinton and van der Maaten, 2008)). Several works have also empirically verified the belief.
Roweis and Saul (2000) and Tenenbaum et al. (2000) have demonstrated that image, speech and
other variant form data can be modeled nearly on low-dimensional manifolds. In particular, Wang
et al. (2016) studies auto-encoder based dimensionality reduction, and shows that the 28×28 = 784
dimensional image from MNIST can be reduced to nearly 10 dimensional representations, which
corresponds to the intrinsic dimension of the handwritten digital dataset.
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Motivated by these findings, in this section, we assume that data lies on a low-dimensional manifold
M embedded in [0, 1]d i.e. supp(X) ⊂ M ⊂ [0, 1]d. We will show a improved upper bound that
is exponential in the intrinsic k of the manifold M instead of the ambient data dimension d for the
size of networks achieving zero robust test error, which implies the efficiency of robust classification
under the low-dimensional manifold assumption. Also, we point out that the exponential dependence
of k is not improvable by establishing a matching lower bound.

5.1 Preliminaries

Let M be a k−dimensional compact Riemannian manifold embedded in Rd, where k is the intrinsic
dimension (k � d).

Definition 5.1 (Chart, atlas and smooth manifold). A chart for M is a pair (U, ϕ) such that
U ⊂ M is open and ϕ : U → Rk, where ϕ is a homeomorphism; An atlas for M is a collec-
tion {(Uα, ϕα)}α∈A of pairwise Cn compatible charts such that

⋃
α∈A Uα = M; And we call M

a smooth manifold if and only if M has a C∞ atlas.

Definition 5.2 (Partition of unity). A C∞ partition of unity on a manifold M is a collection of
non-negative C∞ functions ρα : M → R+for α ∈ A that satisfy (1) the collection of supports,
{supp (ρα)}α∈A, is locally finite; and (2)

∑
α∈A ρα = 1.

Definition 5.3 (Poly-Partitionable). We call that M is poly-partitionable if and only if, for a tangent-
space-induced atlas {(Uα, Tα)}α∈A of M, there exists a particular partition of unity {ρα}α∈A that
satisfies ρα ◦ T−1

α is a simple piecewise polynomial in Rk, where simple piecewise polynomial is
defined as the composite mapping between a polynomial and a size-bounded ReLU network.

The concept, poly-partitionable, defines a class of manifolds that have simple partition of unity,
which is a generalization of some structures in the standard Euclidean space Rd. For example, an
explicit construction for low-dimensional manifold [0, 1]k is {ϕm(x)} in Yarotsky (2017), where the
coordinate system is identity mapping.

5.2 Main results under the low-dimensional manifold assumption

Before giving our main results, we first extend robust classification to the version of manifold.

Definition 5.4 (Robust classification on a manifold). Given a probability measure P on M ×
{−1,+1} and a robust radius δ, the robust test error of a classifier f : M → R w.r.t P and δ
under ℓp norm is defined as Lp,δ

M,P (f) = E(x,y)∼P

[
maxx′∈M,∥x′−x∥p≤δ I{sgn(f(x′)) 6= y}

]
.

Now, we present our main result in this section, which establishes an improved upper bound for size
that is mainly exponential in the intrinsic dimension k instead of the ambient data dimension d.

Theorem 5.5. Let M ⊂ [0, 1]d be a k−dimensional compact poly-partitionable Riemannian man-
ifold with the condition number τ > 0. For any two 2ϵ− separated A,B ⊂ M under ℓ∞ norm,
distribution P on the supporting set S = A ∪ B and robust radius c ∈ (0, 1), there exists a ReLU
network f with at most

Õ
((

(1− c) ϵ/
√
d
)−k̃

)
parameters, such that L∞,cϵ

M,P (f) = 0, where k̃ = O (k log d) is almost linear with respect to the
intrinsic dimension k, only up to a logarithmic factor.

Proof sketch. The proof idea of Theorem 5.5 has two steps. First, we construct a Lipschitz robust
classifier f∗ in Proposition 3.2. Then, we regard f∗ as the target function and use a ReLU network
f to approximate it on the manifold M. The following lemma is the key technique that shows we
can approximate Lipschitz functions on a manifold by using ReLU networks efficiently.

Lemma 5.6. Let M ⊂ [0, 1]d be a k−dimensional compact poly-partitionable Riemannian mani-
fold with the condition number τ > 0. For any small δ > 0 and a L−lipschitz function g : M → R,
there exists a function g̃ implemented by ReLU network with at most Õ

(
(
√
dL/δ)−k̃

)
parameters,

such that |g − g̃| < δ for any x ∈ M, where k̃ is the same as Theorem 5.5.
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By applying the conclusion of Lemma 5.6, we can approximate the 1/ϵ−Lipschitz function f∗ in
Proposition 3.2 via a ReLU network f with at most Õ

(
exp(k̃)

)
parameters, such that the uniform

approximation error ‖f − f∗‖ℓ∞(M) at most 1− c.

Next, we prove the theorem by contradiction. Assume that there exists some perturbed input x′ that
is mis-classified and the original input x is in A. So we know f(x′) < 0 and f∗(x) < ϵ′. This
impiles d∞(x′, A) < d∞(x′, B) < 1+ϵ′

1−ϵ′ d∞(x′, A). Combined with d∞(x′, A) + d∞(x′, B) ≥
d∞(A,B) ≥ 2ϵ, we have d∞(x′, A) > (1− ϵ′)ϵ = cϵ, which is a contradiction.

Remark 5.7. Chen et al. (2019) studies network-based approximation on smooth manifolds, and
also establishes an O(δ−k) bound for the network’s size. However, different from their setting
where the approximation error δ goes to zero, it is reasonable that the separated distance ϵ and
robust radius c are constants in our setting. If we simply follow their proofs, we can only obtain the
bound O((δ/CM)−k) where CM also grows exponentially with respect to k, which further implies
that the final result will be roughly exp(O(k2)). This bound is too loose, especially when k ≈

√
d.

To this end, we propose a novel approximation framework so as to improve the bound to exp(O(k)),
which is presented as Lemma 5.6. And the detailed proof of Lemma 5.6 is deferred to Appendix E.1.

Although we have shown that robust classification will be more efficient when data lies on a low-
dimensional manifold, there is also a curse of dimensionality, i.e., the upper bound for the network’s
size is almost exponential in the intrinsic dimension k. The following result shows that the curse of
dimension is also inevitable under the low-dimensional manifold assumption.

Theorem 5.8. Let ϵ ∈ (0, 1) be a small constant. There exists a sequence {Nk}k≥1 that satisfies

Nk = Ω
(
(2ϵ
√
d/k)−

k
2

)
. and a universal constant C1 > 0 such that the following holds: let

M ⊂ [0, 1]d be a complete and compact k−dimensional Riemannian manifold with non-negative
Ricci curvature , then there exists two 2ϵ-separated sets A,B ⊂ M under ℓ∞ norm, such that for
any µ0−balanced distribution P on the supporting set S = A ∪B and robust radius c ∈ (0, 1), we
have inf {L∞,cϵ

P (f) : f ∈ FNk
} ≥ C1µ0.

In other words, the robust test error is lower-bounded by a positive constant α = C1µ0 unless the
neural network has size larger than exp(Ω(k)). The detailed proof of Theorem 5.8 is presented in
Appendix E.4.

6 Conclusion

This paper provides a new theoretical understanding of the gap between the robust training and
generalization error. We show that the ReLU networks with reasonable size can robustly classify the
finite training data. On the contrary, even with the linear separable and well-separated assumptions,
ReLU networks must be exponentially large to achieve low robust generalization error. Finally,
we consider the scenario where the data lies on the low dimensional manifold and prove that the
ReLU network, with a size exponentially in the intrinsic dimension instead of the inputs’ dimension,
is sufficient for obtaining low robust generalization error. We believe our work opens up many
interesting directions for future work, such as the tight bounds for the robust classification problem,
or the reasonable assumptions that permit the polynomial-size ReLU networks to achieve low robust
generalization error.
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A Preliminaries

In this section, we recall some standard concepts and results in statistical learning theory.
Definition A.1 (growth function). Let F be a class of functions from X ⊂ Rd to {−1,+1}. For any
integer m ≥ 0, we define the growth function of F to be

ΠF (m) = max
xi∈X ,1≤i≤m

|{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| .

In particular, if |{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| = 2m, then (x1, x2, · · · , xm) is said to be
shattered by F .
Definition A.2 (Vapnik-Chervonenkis dimension). Let F be a class of functions from X ⊂ Rd

to {−1,+1}. The VC-dimension of F , denoted by VC-dim(F), is defined as the largest integer
m ≥ 0 such that ΠF (m) = 2m. For real-value function class H, we define VC-dim(H) :=
VC-dim(sgn(H)).

The following result gives a nearly-tight upper bound on the VC-dimension of neural networks.
Lemma A.3. (Bartlett et al., 2019, Theorem 6) Consider a ReLU network with L layers and W
total parameters. Let F be the set of (real-valued) functions computed by this network. Then we
have VC-dim(F ) = O(W log(WL)).

The growth function is connected to the VC-dimension via the following lemma; see e.g. (Anthony
et al., 1999, Theorem 7.6).

Lemma A.4. Suppose that VC-dim(F) = k, then Πm(F) ≤
∑k

i=0

(
m
i

)
. In particular, we have

Πm(F) ≤ (em/k)
k for all m > k + 1.

Lemma A.5. (Mohri et al., 2018, Corollary 3.4) Let H be a family of functions taking values
in {−1,+1} with V C-dimension k. Then, for any δ > 0, with probability at least 1 − δ over
m−samples training dataset S i.i.d. drawn from the data distribution D, the following holds for all
h ∈ H :

LD(h) ≤ LS(h) +

√
2k log em

k

m
+

√
log 1

δ

2m
,

where LD(h) and LS(h) denote the standard test error and training error, respectively.

For deriving upper and lower bounds in the context of ℓ2-robustness, we also need to introduce the
following concepts.
Definition A.6 (ϵ-covering). Given a set Θ ⊂ Rd, we say that X = {x1,x2, · · · ,xn} ⊂ Θ is a
δ-covering of Θ if Θ ⊂ ∪n

i=1B2(xi, δ). The covering number C(Θ, δ) is defined as the minimal size
of a δ-covering set of Θ.

The following proposition is straightforward from the definition.
Proposition A.7. Let Θ ⊂ Rd has volume (i.e. Lebesgue measure) V , then

C(Θ, δ) ≥ vd · δ−dV,

where vd is the volume of a d-dimensional unit ball.
Definition A.8 (ϵ-packing). Given a set Θ ⊂ Rd, we say that X = {x1,x2, · · · ,xn} ⊂ Θ is a
δ-packing of Θ if ‖xi − xj‖2 ≥ δ, ∀i 6= j. The packing number P(Θ, δ) is defined as the maximal
size of a δ-packing set of Θ.

The relationship between the covering and packing number is given by the following result. For
completeness, we also provide a simple proof.
Proposition A.9. For any δ ≥ 0, we have P(Θ, δ) ≥ C(Θ, δ).

Proof. Consider a maximal packing X = {x1,x2, · · · ,xn}. Pick any x ∈ Θ, then there must
exists some xi ∈ X such that ‖x− xi‖2 ≤ δ; otherwise, X ∪ {x} is a larger packing set, which
contradicts the definition of X .

Hence it must holds that Θ ⊂ ∪n
i=1B2(xi, δ) i.e. X is a δ-covering of Θ. The conclusion follows.

16



B Proofs for Section 2

To prove Theorem 2.2, we first recall some well-known results of neural networks for approximating
simple functions.

Lemma B.1. Let ε > 0, 0 < a < b and B ≥ 1 be given.

(1). (Yarotsky, 2017, Proposition 3) There exists a function ×̃ : [0, B]2 → [0, B2] computed by a
ReLU network with O

(
log2

(
ε−1B

))
parameters such that

sup
x,y∈[0,B]

∣∣×̃(x, y)− xy
∣∣ ≤ ε,

and ×̃(x, y) = 0 if xy = 0.

(2). (Telgarsky, 2017, Lemma 3.5) There exists a function R : [a, b] → R+ computed by a ReLU
network with O

(
log4

(
a−1b

)
log3(ε−1b)

)
parameters such that sup[a,b]

∣∣R(x)− 1
x

∣∣ ≤ ε.

The following lemma establishes uniform approximation of polynomials and is a slight generaliza-
tion of (Telgarsky, 2017, Lemma 3.4).

Lemma B.2. Let ε ∈ (0, 1). Suppose that P (x) =
∑s

k=1 αk

∏rk
i=1 (xk,i − ak,i) is a polynomial

with maxk rk = r and αk, ak,i ∈ [0, 1], ∀1 ≤ k ≤ s, 1 ≤ i ≤ rk, and P (x) ∈ [−1,+1] for ∀x ∈
[0, 1]d. Then there exists a function N(x) computed by a ReLU network with O

(
sr log

(
ε−1sr

))
parameters such that sup[0,1]d |P (x)−N(x)| ≤ ε.

Proof. It suffices to show that each monomial Pk(x) =
∏rk

i=1 (xk,i − ak,i) can be ε-approximated
using O

(
r log

(
ε−1r

))
parameters. Firstly, we need at most rk ≤ r parameters to obtain xk,i −

ak,i, 1 ≤ i ≤ rk from a linear transformation. We can then apply Lemma B.1 to perform successive
multiplication. Note that we still have |xk,i − ak,i| ≤ 1, which can be used to control the cumulative
error of ×̃.

We are now ready to prove Theorem 2.2. For convenience, we restate this theorem below.

Theorem B.3. Suppose that D ⊂ Bp(0, 1) with p ∈ {2,+∞} consists of N data, and the two
classes in D are 2ϵ-separated (cf. Definition 1.1), where ϵ ∈

(
0, 12

)
is a constant. Let robustness

radius δ < 1
2ϵ, then there exists a classifier f represented by a ReLU network with at most

O
(
Nd log

(
δ−1d

)
+N · polylog(δ−1N)

)
parameters, such that L̂p,δ

D (f) = 0.

Proof. (1). The case p = 2. First, we choose C, ε1, ε2 > 0 and m ∈ Z+ that satisfy

C
(
(δ2 + ε1)

m + ε2
)
≤ 1

4
< 4N ≤ C

(
(R2 − ε1)

m − ε2
)
. (2)

These constants will be specified later. Since for ∀x0 ∈ [0, 1]d, x → ‖x − x0‖2 is a polyno-
mial that consists of d monomials and with degree 2, satisfying the conditions in Lemma B.2, there
exists a function ϕ1 computed by a ReLU network with O

(
d log

(
ε−1
1 d

))
parameters such that

supx∈[0,1]d

∣∣ϕ1(x)− ‖x− x0‖2
∣∣ ≤ ε1. We may further assume that ϕ

(
[0, 1]d

)
⊂ [0, 1], or other-

wise we can consider σ (ϕ1(x))− σ (ϕ1(x)− 1) instead.

Applying Lemma B.2 again, we can see that the function x → xm on [0, 1] can be approximated
with error ε2 by a function ϕ2 computed by a ReLU network with O

(
m log

(
ε−1m

))
parameters.

Now we can see that 1 + C · ϕ2 ◦ ϕ1 is computable by a ReLU network and takes value in
[
1, 54

]
when x ∈ B(x0, δ) and in (4N + 1, C + 1) when x /∈ B(x0, R) (since R ≤ 1).

The final step is to choose ϕ3 computed by a ReLU network with O
(
log4 C log3 (NC)

)
parameters

such that it approximates 1
x on [1, C + 1] with error < 1

4N . Hence ϕ3 ◦ (1 + C · ϕ2 ◦ ϕ1) is larger
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than 3
4 inside B(x0, δ) and smaller than 1

2N outside B(x0, R). This construction uses a total of
O(W ) parameters, where

W = d log
(
ε−1
1 d

)
+m log

(
ε−1
2 m

)
+ log4 C log3(NC). (3)

Finally, we choose

ε1 =
Rδ(R− δ)

R+ δ
, m = max

{
1, log

32Nδ

R

}
, ε2 =

1

33N

(
R(R2 + δ2)

R+ δ

)m

,

and C = 4N
(R2−ε1)m−ε2

= O
(
Nδ−2m

)
, which satisfies (2). Plugging all expressions into (3), we

can see that
W = O

(
d
(
log d+ log δ−1 + log(R− δ)−1

)
+ log7

(
δ−1N

))
.

We denote this construction by ψ(x;x0,θ), where θ consists of all parameters. The ar-
guments above show that there exists θ = θ(x0) such that ψ(x;x0, θ) > 3

4 when
x ∈ B(x0, δ) and ψ(x;x0,θ) < 1

2N when x /∈ B(x0, R). Consider the function
Ψ(x;θ1:N ) = 4

∑N
i=1 ψ(x;xi,θi) − 5

2 . The total number of parameters in Ψ is Õ (Nd).
Moreover, if we choose θi = θ(xi) when yi = 1 and θi = 0 when yi = −1, then Ψ satisfies the
condition in Theorem B.3.

(2). The case p = ∞. To obtain the same result under the ℓ∞ norm, it suffices to construct a neural
network with size O(d) parameters to represent the function x → ‖x− x0‖∞; the remaining steps
are exactly the same with the ℓ2 case.

Let x(i) denote the i-th coordinate of x, then ‖x− x0‖∞ = max1≤i≤d

∣∣∣x(i) − x
(i)
0

∣∣∣. Since

|a| = 1

2
(max{a, 0}+max{−a, 0}) ,

we can see that x(i) →
∣∣∣x(i) − x

(i)
0

∣∣∣ can be represented by a constant-size ReLU network. More-

over, the function max{a, b} = 1
2 (|a+ b|+ |a− b|), so that the function (a1, a2, · · · , ad) →

max1≤i≤d ad can be represented with O(d) parameters. To summarize, x → ‖x− x0‖∞ can
be represented using a ReLU network of size O(d), as desired.

In the following, we prove Theorem 2.3.
Theorem B.4 (Restatement of Theorem 2.3). Let p ∈ {2,+∞} and Fn be the set of functions
represented by some ReLU network with at most n parameters. If for any 2ϵ-separated data set
D under ℓp norm, there exists a classifier f ∈ Fn such that L̂p,δ

D (f) = 0, then it must hold that
n = Ω(

√
Nd).

Proof. It follows from the assumption that given any data points x1,x2, · · · ,xN which are pair-
wise 2ϵ-separated, there exists f ∈ Fn being able to achieve zero training error for any binary label.
It directly follows from (Gao et al., 2019, Theorem 6.1) that

VC-dim(Fn) = Ω(Nd).

On the other hand, suppose that L 6= n is the depth of the neural network, then we have
VC-dim(Fn) = O(nL log(nL)) = O(n2).

As a result, it follows that n = Ω̃(
√
Nd), as desired.

C Proofs for Section 3

C.1 Proof of Theorem 3.3

The proof idea of Theorem 3.3 has two key steps. First, we construct a Lipschitz classifier f∗ based
on distance function between a point and a close set that can ϵ− robustly classify A,B. Then we
regard f∗ as the target function and use a ReLU network to approximate it to derive the cϵ−robust
classifier. Before proving the theorem, we first introduce the two following useful conclusions,
which also corresponding to the two steps of proof.
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Proposition C.1. For the separable A,B ⊂ [0, 1]d, we define f∗(x) := d∞(x,B)−d∞(x,A)
d∞(x,A)+d∞(x,B) , which

has the following properties:

1. f∗(x) can classify A,B correctly i.e. f∗(x) =
{

1, x ∈ A
−1, x ∈ B

.

2. f∗(x) is a ϵ-robust classifier i.e. for any perturbed input x′ that satisfies ||x′ − x||∞ ≤ ϵ
can also be classified correctly.

3. f∗(x) is 1
ϵ -Lipschitz w.r.t. ℓ∞ norm.

We can check these properties by the continuity and 1-Lipschitz property of distance function
d∞(p, S).

Lemma C.2. For any L−lipschitz function f in [0, 1]d, there exists a function f̃ implemented by
ReLU network with at most c1(c2ϵ/L)−d(d2+d log d+d log(1/ϵ)) parameters that satisfies |f(x)−
f̃(x)| ≤ ϵ for any x ∈ [0, 1]d, where c1 and c2 are constants.

This lemma provides a useful approximation tool for us, which is an improved version of Theorem
1 in Yarotsky (2017). Compared with Theorem 1 in Yarotsky (2017), we use Lipschitz property
of function instead of high-order differetiability and focus on not the bound order when ϵ goes to
zero but also more accurate bound order depending on ϵ, L and d. By a refined analysis of total
approximation error, we can derive this lemma.

Proof of Theorem 3.3. By Lemma C.2, we can approximate f∗ in Lemma C.1 satisfying uniform
error at most 1−c via a ReLU network f with at most c1(c2(1−c)ϵ)−d(d2+d log d+d log(1/(1−c)))
parameters. Then, we prove the theorem by contradiction. Assume that there exists some perturbed
input x′ that is mis-classified and the original input x is inA. So we know f(x′) < 0 and f∗(x) < ϵ′.
This impiles d∞(x′, A) < d∞(x′, B) < 1+ϵ′

1−ϵ′ d∞(x′, A) Combined with d∞(x′, A)+d∞(x′, B) ≥
d∞(A,B) ≥ 2ϵ, we have d∞(x′, A) > (1− ϵ′)ϵ = cϵ, which is the contradiction.

C.2 Proof of Theorem 3.4

The main idea of proof is to estimate the lower bound of the family’s VC-dimension via the definition
of cϵ-robust family.

Proof of Theorem 3.4. The key idea is to find some discrete points that can be shattered by the
function family Fn.

(1). The p = ∞ case. We use K to denote b 1
2ϵc + 1, and we can divide [0, 1]d into (K − 1)d

non-overlapping sub-cubes. Let S be the set of all the vertices of sub-cubes, which has Kd elements
and can be represented by

S = {x1,x2, · · · ,xKd} = {(2ϵi1, 2ϵi2, · · · , 2ϵid)|0 ≤ i1, i2, · · · , id < K}.

For any partition I, J of [Kd] (I ∩ J = Φ, I ∪ J = [Kd]), let A = {xi|i ∈ I} and B = {xj |j ∈ J}
be the positive and negative classes. Then we have d∞(A,B) ≥ 2ϵ. By the definition of
cϵ-robust classifier family, there exists a classifier f ∈ F classify A,B correctly. Thus, the
family F shatter the subset S ⊂ [0, 1]d. By using the conclusion of Lemma A.3, we have
Kd ≤ VC-dim(F ) = O(WL log(N)) = O(W 2 log(W )) where L is the depth of networks and W
is the total number of parameters.

(2). The p = 2 case. Similar to the case of p = ∞, we need to construct a set S ⊂ B2(0, 1) such
that the ℓ2-distance between any two points in S is as least 2ϵ.

Specifically, we choose S to be a 2ϵ-packing of B2(0, 1) with maximal size. Then we have that
|S| ≥ P(B2(0, 1), 2ϵ) ≥ C(B2(0, 1), 2ϵ) ≥ (2ϵ)−d, by Propositions A.7 and A.9. Similar to the
p = ∞ case, robustness implies that S can be shattered by Fn, so that Kd = O(W 2 logW ) and the
conclusion follows.
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D Proofs for Section 4

In this section, we present the proof of Theorem 4.3 and 4.4.
Theorem D.1 (Restatement of Theorem 4.3). Let ϵ ∈ (0, 1) be a small constant, p ∈ {2,∞} and
Fn be the set of functions represented by ReLU networks with at most n parameters. There exists
a sequence Nd = Ω

(
(2ϵ)−

d−1
6

)
, d ≥ 1 and a universal constant C > 0 such that the following

holds: for any c ∈ (0, 1), there exists two linear separable sets A,B ⊂ [0, 1]d that are 2ϵ-separated
under ℓp-norm, such that for any µ0−balanced distribution P on the supporting set S = A∪B and
robust radius cϵ we have

inf {Lp,cϵ
P (f) : f ∈ FNd

} ≥ Cµ0.

Proof. (1). The p = ∞ case. Define

Sϕ =

{(
i1
K
,
i2
K
, · · · , id−1

K
,
1

2
+ cε · ϕ(i1, i2, · · · , id−1)

)
: 1 ≤ i1, i2, · · · , id−1 ≤ K

}
,

and

S̃ =

{(
i1
K
,
i2
K
, · · · , id−1

K
,
1

2

)
: 1 ≤ i1, i2, · · · , id−1 ≤ K

}
,

where K = b 1
2εc, and ϕ : {1, 2, · · · ,K}d−1 → {−1,+1} be an arbitrary mapping. For a vector

x ∈ Rd, we use x(i) to denote its i-th component. Let Aϕ = Sϕ ∩
{
x ∈ Rd : x(d) > 1

2

}
, Bϕ =

Sϕ−Aϕ and µ be the uniform distribution on S. It’s easy to see thatA andB are linear separable by
the hyperplane x(d) = 1

2 . Moreover, we clearly have d(A,B) ≥ 2ε. We will show that there exists
some choice of ϕ such that robust classification of Aϕ and Bϕ with (cε, 1− α)-accuracy requires at
least Ω

(
K(d−1)/6

)
parameters.

Assume that for any choices of ϕ, the induced setsAϕ andBϕ can always be robustly classified with
(cε, 1 − α)-accuracy by a ReLU network with at most M parameters. Then, we can construct an
enveloping network Fθ with M − 1 hidden layers, M neurons per layer and at most M3 parameters
such that any network with size ≤ M can be embedded into this envelope network. As a result, Fθ

is capable of (cε, 1 − α)-robustly classify any sets Aϕ, Bϕ induced by arbitrary choices of ϕ. We
use Rϕ to denote the subset of Sϕ = Aϕ ∪Bϕ satisfying |Rϕ| = (1−α) |Sϕ| = (1−α)Kd−1 such
that Rϕ can be cε-robustly classified.

Consider the projection operator P onto the hyperplane x(d) = 1
2 . For any set C ∈ Rd, we use C̃ to

denote P(C). Then cε-robustness implies that the labelled data set

R+
ϕ =

{
(x, y) : x ∈ R̃ϕ, y = ϕ

(
Kx(1), · · · ,Kx(d−1)

)}
can be correctly classified by Fθ , with appropriate choices of parameters.

Let V = 1
2K

d−1 and R̂ϕ be the collection of all labelled V -subset (i.e. subset of size V ) ofR+
ϕ . For

each V -subset R of S̃, we use G(R) to denote the set of all labelings of R, so that |G(R)| = 2V .

Note that for each labelled V -subset T , there exists at most 2K
d−1−V different choices of ϕ such

that T ⊂ R+
ϕ (or, equivalently, T ∈ R̂ϕ): this is because the value of ϕ on data points in T has been

specified by their labels, and there are two choices for each of the remaining Kd−1 − V points in
{1, 2, · · · ,K}d−1. As a result, we have∣∣∣∪ϕR̂ϕ

∣∣∣ ≥ 2−(Kd−1−V )
∑
ϕ

∣∣∣R̂ϕ

∣∣∣ = 2V
(
(1− α)Kd−1

V

)
.

On the other hand, the total number of V -subset of S̃ is
(
Kd−1

V

)
, thus there must exists a V -subset

V0 ⊂ S̃, such that at least(
Kd−1

V

)−1

· 2V
(
(1− α)Kd−1

V

)
≥

(
2
(
(1− α)kd−1 − V

)
Kd−1 − V

)V

(4)
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different labelings of V0 are included in ∪ϕR̂ϕ. Since Fθ can correctly classify all elements (which

are V -subsets) in ∪ϕR̂ϕ, it can in particular classify the set V0 with at least
(

2((1−α)kd−1−V )
Kd−1−V

)V

different assignments of labels. Let dV C be the VC-dimension of Fθ , then by Lemma A.4, either
dV C ≥ V = 1

2K
d−1, or

(2(1− 2α))
V ≤

(
2
(
(1− α)Kd−1 − V

)
Kd−1 − V

)V

≤ ΠFθ
(V ) ≤

(
eV

dV C

)dV C

,

where Π is the growth function. The RHS is increasing in dV C as long as dV C ≤ V . When
α ≤ 1

10 , we have 2(1 − 2α) > (10e)1/10, so that dV C ≥ 1
10V = 1

20K
d−1. Finally, since Fθ

has at most M3 parameters, classical bounds on VC-dimension (Bartlett et al., 2019) imply that
M = Ω

(
K(d−1)/6

)
, as desired.

(2). The p = 2 case. Let P be an 2ϵ-packing of the unit ball Bd−1 in Rd−1. Since the packing
number P(Bd−1, ‖ · ‖, 2ϵ) ≥ C(Bd−1, ‖ · ‖2, 2ϵ) ≥ (2ϵ)−(d−1) by Propositions A.7 and A.9, where
C(Θ, ‖·‖, ϵ) is the ϵ-covering number of a set Θ. For any λ ∈ (0, 1), we can consider the construction

Sϕ =

{(
x,

1

2
+ ϵ0 · ϕ(x)

)
: x ∈ P

}
,

where ϕ : P → {−1,+1} is an arbitrary mapping. It’s easy to see that all points in Sϕ with first d−1

components satisfying ‖x‖2 ≤
√

1− ε20 are in the unit ball Bd, so that by choosing ε0 sufficiently
small, we can guarantee that |Sϕ ∩ Bd| ≥ 1

2 (2ϵ)
−(d−1). For convenience we just replace Sϕ with

Sϕ ∩ Bd from now on.

Let Aϕ = Sϕ ∩
{
x ∈ Rd : x(d) > 1

2

}
, Bϕ = Sϕ − Aϕ. It’s easy to see that for arbitrary ϕ, the

construction is linear-separable and satisfies 2ϵ-separability. The remaining steps are just identical
to the ℓ∞ case.

Theorem D.2 (Restatement of Theorem 4.4). For any two linear-separable A,B ⊂ [0, 1]d, a distri-
bution P on the supporting set S = A∪B, δ > 0 and β > 0, let H be the family of d−dimensional
hyperplane classifiers. Then, there exists a poly-time efficient algorithm A : 2S → H , for
N = Ω(d/β2) training instances independently randomly sampled from P , with probability 1 − δ

over samples, we can use the algorithm A to learn a classifier f̂ ∈ F such that

LP (f̂) ≤ β,

where LP (f) := P(x,y)∼P {y 6= f(x)} denotes the standard test error.

Proof. We i.i.d. sample N instances from the data distribution P , and use T to denote the training
dataset. By Lemma A.5, with probabililty at least 1− δ, we have

LP (h) ≤ LT (h) +O

(√
d

N

)
, ∀h ∈ H

By conclusions of Boser et al. (1992) and results of convex optimization, we have a poly-time
algorithm A : 2S → H such that LT (A(T )) ≤ β

2 , and we use f̂ to denote A(T ). Finally, when
N = Ω(d/β2) is sufficient large, we have LP (f̂) ≤ β

2 + β
2 = β.

E Proofs for Section 5

E.1 Proof of Lemma 5.6

Theorem E.1 (Restatement of Lemma 5.6). Let M ⊂ [0, 1]d be a k−dimensional compact poly-
partitionable Riemannian manifold with the condition number τ > 0. For any small δ > 0 and a
L−lipschitz function f : M → R, there exists a function f̂ implemented by ReLU network with at
most

Õ
(
(
√
dL/δ)−k̃

)
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parameters, such that |f − f̂ | < δ for any x ∈ M, where k̃ is the same as Theorem 5.5.

Proof. The full proof has six steps, and we finally construct a ReLU network as the following form

f̂ =

N∑
i=1

(f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)×̂(Îθ ◦ d̂2i ),

where all f̂i, ϕi, ρ̂i, Ti, Î∆, d̂2i and ×̂ are implemented by sub ReLU networks, and these notation’s
detail will be introduced step by step.

As the above form shows, three sub-network groups will be combined by multiplication approxima-
tor ×̂, where each group corresponds to a factor in the partition-of-unity-based decomposition of f
(i.e. f =

∑N
i=1 f × ρi × I{x ∈ Ui}, and where {ρi}i∈[N ] satisfying

∑
i∈[N ] ρi = 1 is a partition of

unity on an atlas {Ui}i∈[N ]).

Step 1: Construct poly-partition of unity on M
Consider a open cover {Br(x)}x∈M on M, where we use Br(c) to denote the Euclidean neighbor-
hood with center c and radius r. Due to the compactness of manifold M, we know there exists a fi-
nite open cover {Br(xi)}i∈I indexed by a finite sub-index set I , which satisfies M ⊂

⋃
i∈I Br(xi).

Then, we estimate the cardinal number of index set. By the conclusions of Niyogi et al. (2008),
when we select radius r satisfying r < τ/2, we have the following lemma, which gives an lower
bound of k−dimensional volume of the local neighborhood of M.

Lemma E.2. (Niyogi et al., 2008, Lemma 5.3) Let c ∈ M. Now consider U = M∩ Br(c). Then
vol(U) ≥ (cos(θ))k vol

(
Bk

r (c)
)

where Bk
r (c) is the k-dimensional ball in Tc centered at c, θ =

arcsin(r/2τ). All volumes are k-dimensional volumes where k is the dimension of M.

Recall the relation between the covering number N (M, d2, r) and the packing number P(M, d2, r),
and then we have

N (M, d2, r) ≤ P(M, d2, r/2)

≤ vol(M)

(cos(θ))k vol
(
Bk

r/2(c)
)

≤ cN
vol(M)

rk
,

where cN is a constant that only exponentially depends on k log k.

By the poly-partitionable and smoothness properties of Riemannian manifold M, there exists a
collection {Ui, Ti, ρi}i∈N (M,d2,r) such that {Ui, Ti} compose a tangent-space-induced atlas and
{ρi} also compose a poly-partition of unity on M. So we can decompose f as f =

∑N
i=1 fρi,

where we use notation N to denote N (M, d2, r) so as to simplify the written process.

Step 2: Local almost isotropic transformation via random projection

To achieve dimensional reduction of f in the local neighborhood Ui, we will use the following
random projection technique proposed by Baraniuk and Wakin (2009).

Lemma E.3. (Baraniuk and Wakin, 2009, Theorem 3.1)

Let M be a compact k-dimensional sub-manifold of Rd having condition number 1/τ . Fix 0 < δ <

1 and 0 < η < 1. Let A be a random orthoprojector from Rd to Rk̃ with

k̃ = O

(
k log

(
d vol(M)τ−1δ−1

)
log(1/η)

δ2

)
.

If k̃ ≤ d, then with probability at least 1 − η the following statement holds: For every distinct pair
of points x, y ∈ M,

(1− δ)

√
k̃

d
≤ ‖Ax−Ay‖2

‖x− y‖2
≤ (1 + δ)

√
k̃

d
.

22



Since we can select η is very close to 1 in order to the probability 1− η > 0, there exists a orthopro-
jector Ai for sub-manifold Ui by applying Lemma E.3. And we use Vr to denote the uniform upper
bound of vol(Ui), which makes the uniform dimension k̃ = O (k log d) for each i ∈ [N ]. Let local
almost isotropic transformation ϕi(x) = 1

2Ai(x − ci) +
1
2⊮, where we use ⊮ to denote the vector

(1, 1, ...1) ∈ Rk̃, and then we know ϕi(Ui) ⊂ [0, 1]k̃.

Step 3: Approximate Lipschitz mapping f ◦ ϕ−1
i by f̂i

To approximate f ◦ ϕ−1 : [0, 1]k̃ → R via ReLU networks, we first caculate the Lipschitzness of it.
For any pair x, y of ϕi(Ui), we have

|f ◦ ϕ−1(x)− f ◦ ϕ−1(y)| ≤ L‖ϕ−1(x)− ϕ−1(y)‖∞
≤ L‖ϕ−1(x)− ϕ−1(y)‖2

≤ 2L

1− δ

√
d

k̃
‖x− y‖2

≤ 2L
√
d

1− δ
‖x− y‖∞.

The first inequality is due to the Lipschitzness of function f . The second and last equality is the
equivalence between ℓ2 norm and ℓ∞ norm. The third inequality uses the isotropic property of the
orthoprojector Ai. So f ◦ ϕ−1

i is a 2L
√
d

1−δ Lipschitz mapping from [0, 1]k̃ to R.

By using Lemma C.2, there exists a ReLU network f̂i with at most

c1

(
c2ϵ1(1− δ)

2L
√
d

)−k̃

(k̃2 + k̃ log k̃ + k̃ log
1

ϵ1
)

parameters such that for any x ∈ ϕi(Ui), we have the uniform error ϵ1 as

|f ◦ ϕ−1
i (x)− f̂i(x)| ≤ ϵ1.

Notice that ϕi is a linear mapping so that we can use a ReLU network with only one layer to represent
it, which shows that we can approximate f efficiently in the local neighborhood Ui.

Step 4: Approximate simple piecewise polynomial ρi ◦ T−1
i by ρ̂i

According to the poly-partitionable property of manifold M and Lemma B.2, there exists a ReLU
network ρ̂i with at most O(k log(k/ϵ2)) parameters such that for any x ∈ Ti(Ui) ⊂ [0, 1]k, we have
the uniform error ϵ2 as

|ρi ◦ T−1
i (x)− ρ̂i(x)| ≤ ϵ2,

where Ti is composed by the tangent vectors of ci and is scaled and translated to ensure Ti(Ui) ⊂
[0, 1]k.

Step 5: Determine the corresponding neighborhood for input

Notice that supp(ρi) ⊂ Ui but ρ̂i may be non-zero for some point [0, 1]k/Ti(Ui), so we need to
determine the corresponding chart for input x ∈ M by ReLU networks. Inspired by Chen et al.
(2019), we construct indicate approximator Îθ and ℓ2 distance approximators {d̂2i }i∈[N ] based on
quadratic approximator in Lemma B.1 to approximate the neighborhood’s indicator I{x ∈ Ui},
which relies upon the following identical equations

I{x ∈ Ui} = I{‖x− ci‖22 < r2} = I{(·) < r2} ◦ d2i (x),

where d2i (x) denotes the square of ℓ2 distance between x and ci. Then, if Îθ ≈ I{(·) < r2} and
d̂2i ≈ d2i , we have Îθ ◦ d̂2i ≈ I{(·) < r2} ◦ d2i = I{x ∈ Ui}, which determines the corresponding
chart approximately.

Assume that the uniform error of square distance approximator is ϵq (i.e. |d2i − d̂2i | ≤ ϵq for any
x ∈ [0, 1]d). In fact, functions computed by ReLU networks are piecewise linear but the indicator
functions are not continuous, so we need to relax the indicator such that Îθ(x) = 1 for x ≤ r2+ϵq−θ,
Îθ(x) = 0 for x ≥ r2 − ϵq and Îθ is linear in (r2 + ϵq − θ, r2 − ϵq).

23



To correct the difference between indicator and its approximator, we will bound the value of func-
tion f such that the magnitude of f(x) is sufficient small when x is nearly on the boundary of Ui.
Intuitively, for any y ∈ ∂(Ui), we have

fρi(y) = 0.

This is due to supp(ρi) ⊂ Ui, which implies that we only need estimate the upper bound of ‖x−y‖2
for the Lipshcitzness of f and smoothness of ρi, where x is nearly on ∂Ui. Indeed, we can prove
that for any xU ′

i :=∈ Ui/B√
r2−θ(ci), there exists y ∈ ∂Ui such that ‖x−y‖2 = O(θ) (Chen et al.,

2019, Lemma 3).

Step 6: Estimate the total error

We combine three sub-network groups as

f̂ =

N∑
i=1

(f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)×̂(Îθ ◦ d̂2i ).

Next, we estimate the total error between f and f̂ . For any x ∈ M , we use gi to denote (f̂i ◦
ϕi)×̂(ρ̂i ◦ Ti), Ii to denote I{x ∈ Ui} and Îi to denote Îθ ◦ d̂2i , then we have

|f(x)− f̂(x)| =

∣∣∣∣∣
N∑
i=1

fρi −
N∑
i=1

gi×̂Îi

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

fρi − giIi

∣∣∣∣∣+
∣∣∣∣∣

N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i:x∈Ui

fρi − (f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)

∣∣∣∣∣+
∣∣∣∣∣

N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
i:x∈Ui

((f ◦ ϕ−1
i − f̂i) ◦ ϕi)ρi

∣∣∣∣∣+
∣∣∣∣∣ ∑
i:x∈Ui

(f̂i ◦ ϕi)× ρi − (f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣ .
The second identical equation is due to supp(ρi) ⊂ Ui. Notice that

∑
i∈[N ] ρi = 1, then the first

term satisfies that∣∣∣∣∣ ∑
i:x∈Ui

((f ◦ ϕ−1
i − f̂i) ◦ ϕi)ρi

∣∣∣∣∣ ≤
( ∑

i:x∈Ui

ρi

)
max
i:x∈Ui

{|f ◦ ϕ−1
i − f̂i|} ≤ ϵ1.

By the approximation of ×̂, the second term satisfies that∣∣∣∣∣ ∑
i:x∈Ui

(f̂i ◦ ϕi)× ρi − (f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)

∣∣∣∣∣ ≲
∣∣∣∣∣ ∑
i:x∈Ui

(f̂i ◦ ϕi)× ((ρi ◦ T−1
i − ρ̂i) ◦ Ti)

∣∣∣∣∣ ≤ cfNϵ2.

where cf is the uniform upper bound the value of {f̂i}i∈[N ]. And the third term satisfies that∣∣∣∣∣
N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣ ≲
∣∣∣∣∣

N∑
i=1

gi × (Ii − Îi)

∣∣∣∣∣ ≤
N∑
i=1

max
x∈U ′

i

|gi| ≲
N∑
i=1

max
x∈U ′

i

|fρi| = O(Nθ).

Finally, we choose ϵ1 = O(ϵ) and ϵ2 = θ = O(ϵ/N) to control the total error boounded by ϵ and
derive the upper bound for the size of network in Lemma E.1.
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E.2 Proof of Theorem 5.8

Theorem E.4 (Restatement of Theorem 5.8). Let ϵ ∈ (0, 1) be a small constant. There exists a

sequence {Nk}k≥1 that satisfies Nk = Ω
(
(2ϵ
√
d/k)−

k
2

)
. and a universal constant C1 > 0 such

that the following holds: let M ⊂ [0, 1]d be a complete and compact k−dimensional Riemannian
manifold with non-negative Ricci curvature , then there exists two 2ϵ-separated sets A,B ⊂ M
under ℓ∞ norm, such that for any µ0−balanced distribution P on the supporting set S = A ∪ B
and robust radius c ∈ (0, 1), we have

inf {L∞,cϵ
P (f) : f ∈ FNk

} ≥ C1µ0.

Proof. Our proof relies on the following propositions.

Lemma E.5. (Niyogi et al., 2008, Proposition 6.3)

Let M be a sub-manifold of Rd with condition number 1/τ . Let p and q be two points in M such
that ‖x− y‖2 = r. Then for all r ≤ τ/2, the geodesic distance dM(p, q) is bounded by

dM(x, y) ≤ τ − τ
√

1− 2r/τ .

By Lemma E.5, we know that dM(x, y) ≤ τ − τ
√

1− 2r/τ ≤ 2r when r ≤ τ/2.

Lemma E.6. (Bishop, 1964, Bishop-Gromov Volume Comparison Theorem) Let M is a complete
Riemannian manifold with Ricci curvature Ric ≥ (k − 1)l, and p ∈ M is an arbitrary point. Then
the function

r 7→ vol (BM,r(p))

vol (Bl
r)

is a non-increasing function which tends to 1 as r goes to 0 , where BM,r(p) is the M’s geodesic
ball of radius r and center p, and Bl

r is a geodesic ball of radius r in the space form Mk
l . In

particular, vol (BM,r(p)) ≤ vol
(
Bl

r

)
.

By Lemma E.6 and the non-negativeness of M’s Ricci curvature, we know vol(BM,r(c)) ≤
vol(B0

r ) = rkVk, where Vk denotes the volume of the unit ball in Rk. Recall the relation between
the covering number NM(r) and the packing number PM(r) on the manifold M, then we have

PM(r) ≥ NM(2r) ≥ vol(M)

(2r)kVk
= Ω

(
vol(M)k

k
2

rk

)
.

By choosing r = 2ϵ
√
d, we know that there are at least Ω

(
(2ϵ
√
d/k)−k

)
points on M such that

the ℓ∞ distance between each pair points of these is more than 2ϵ, where we use Q to denote the set
of these selected points. The remain of proof is similar to the latter half of proof for Theorem D.1.

Let S = Q be the supporting set. Assume that for any partition A,B of S such that A∪B = S and
A ∩ B = ∅, there exists a classifier f ∈ FNk

that robustly classifies A and B with at least 1 − α
accuracy. Next, we estimate the lower and upper bounds for the cardinal number of the vector set

R := {(f(x))x∈Q|f ∈ FNk
}.

Let n denote |Q|, then we have

R = {(f(x1), f(x2), ...f(xn))|f ∈ FNk
},

where Q = {x1, x2, ..., xn}.

On one hand, we know that for any u ∈ {−1, 1}n, there exists a v ∈ R such that dH(u, v) ≤ αn,
where dH(·, ·) denotes the Hamming distance, then we have

|R| ≥ N ({−1, 1}n, dH , αn) ≥
2n∑αn

i=0

(
n
i

) .
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On the other hand, by applying Lemma A.4, we have

2n∑αn
i=1

(
n
i

) ≤ |R| ≤ ΠFNk
(n) ≤

l∑
j=0

(
n

j

)
.

where l is the VC-dimension of FNk
. In fact, we can derive l = Ω(n) when α is a small constant.

Assume that l < n− 1 , then we have
∑l

j=0

(
n
j

)
≤ (en/l)l and

∑αn
i=1

(
n
i

)
≤ (e/α)αn, so

2n

(e/α)
αn ≤ |R| ≤ (en/l)l.

We define a function h(x) as h(x) = (e/x)x, then we derive

2 ≤
( e
α

)α( e

l/n

)l/n

= h(α)h(l/n).

When α is sufficient small, l/n ≥ C(α) that is a constant only depending on α, which implies
l = Ω(n). Finally, by using Lemma A.3 and n = |Q| = Ω

(
(2ϵ
√
d/k)−k

)
, we know Nk =

Ω
(
(2ϵ
√
d/k)−

k
2

)
. Combined with the definition of balanced distribution, we conclude the proof

of Theorem E.4.
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